
Relational Synthesis of Programs

(Author names omitted for submission)

Abstract

Recent work has shown how to use constraint logic pro-
gramming to relationally define an interpreter that runs
“backwards,” mapping an output value (such as 6) onto
a potentially infinite stream of input expressions (such as
((λ (n) (∗ n 2)) 3) and (+ 5 1)). Surprisingly, a trivial one-
line query causes the interpreter to efficiently generate pro-
grams that evaluate to themselves (“quines”). Naturally, one
wonders whether this approach to program synthesis can do
more than generate quines.

We demonstrate a simpler, more flexible approach to re-
lational program synthesis, using a relational reducer for
combinatory logic. Combinatory logic has no notion of vari-
able binding, and can be implemented in any logic program-
ming language that supports complete search and universal
quantification. The relational reducer is extremely terse: 11
lines of code, each of which corresponds to a mathemati-
cal rule from combinatory logic. The reducer can synthesize
combinators directly from their logical definitions, provid-
ing program synthesis “for free”; for example, the query
∃F.∀X.FX = X(FX) generates a fixpoint combinator F .
We show that sharing between input and output arguments
vastly reduces the search space, making combinator synthe-
sis practical.

Categories and Subject Descriptors I.2.2 [Automatic
Programming]: Program synthesis; D.1.6 [Programming
Techniques]: Logic Programming; D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming

General Terms Languages

Keywords combinatory logic, miniKanren, relational pro-
gramming

1. Introduction

McCarthy (1978) posed this problem in his description of
value, a minimal LISP interpreter:

Difficult mathematical type exercise: Find a list e such
that value e = e.

Such lists, which are also programs in LISP, Scheme, and
Racket, are called quines. In other words, a quine is a

[Copyright notice will appear here once ’preprint’ option is removed.]

program that evaluates to itself (Hofstadter 1979). A classic
non-trivial quine in Scheme (Thompson II) is:

(define quinec
’((λ (x) (list x (list (quote quote) x)))

(quote (λ (x) (list x (list (quote quote) x))))))

There are mathematical techniques for constructing
quines, based on Kleene’s Second Recursion Theorem (Rogers
1967). Recently Byrd et al. (2012) proposed an alternate ap-
proach: let the interpreter solve the “difficult mathematical
type exercise” for us! Their approach was to use a logic
programming language, miniKanren (Byrd 2009; Byrd and
Friedman 2006; Friedman et al. 2005), extended with various
constraints, to define an interpreter as a relation. The re-
sulting evaluation relation, eval-exp o, could then be used to
generate quines, by associating both the “input” expression
and the “output” value with the query variable q :

(caar (run1 (q) (eval-exp o q ’() q))) ⇒
((λ (0) (list 0 (list ’quote 0)))
’(λ (0) (list 0 (list ’quote 0))))

This quine, generated in approximately one second on a
laptop computer, is equivalent to quinec, above.

This approach to quine generation demonstrates the
promise of program synthesis using very high-level rela-
tional interpreters and term reducers. Unfortunately, the
eval-exp o has several drawbacks. The implementation of
the interpreter is subtle, and requires that miniKanren be
extended with various constraints. Most importantly, eval-
exp o is implemented as a big-step interpreter, which reduces
an expression all the way to a value. This makes it impos-
sible to synthesize certain interesting classes of programs,
such as fixpoint combinators (Barendregt 1984).

In this paper we explore a simpler approach to relational
program synthesis, based on combinatory logic (Bimbó 2012;
Curry and Feys 1958; Schönfinkel 1924) rather than Scheme.
Combinatory logic does not include a notion of variable
binding, which greatly simplifies the implementation of a
relational term reducer. The resulting reducer is extremely
succinct—just 11 lines of miniKanren code—and can syn-
thesize combinators, including fixpoint combinators, directly
from their definitions.

Our paper is structured as follows. Section 2 provides
an overview of the miniKanren language, and describes the
two language extensions we will require. Section 3 gives
a brief overview of combinatory logic. Section 4 explains
our translation of combinatory logic into miniKanren, and
gives examples of combinator synthesis. Section 5 discusses
performance. Section 6 contains our concluding thoughts,
including a discussion of how our approach differs from that
of Byrd et al. (2012).

We begin by introducing the extended miniKanren lan-
guage that we will use to write the relational term reducer.

1 2013/11/16

2. The Extended miniKanren Language

In this section we briefly review the core miniKanren lan-
guage (section 2.1), then introduce eigen, a new operator for
expressing universal quantification using eigenvariables (sec-
tion 2.2). We conclude with a description of the defmatche

pattern-matching syntax (section 2.3), used to make the re-
lational reducer more succinct.

Readers already familiar with miniKanren can safely skip
to section 2.2 to learn about eigen, while those wishing to
learn more about miniKanren should see Byrd (2009), Byrd
and Friedman (2006) (from which this subsection has been
adapted), and Friedman et al. (2005).

2.1 miniKanren Refresher

Our code uses the following typographic conventions. Lexi-
cal variables are in italic, forms are in boldface, and quoted
symbols are in sans serif. By our convention, names of rela-
tions end with a superscript o—for example any o, which is
entered as anyo. Some relational operators do not follow this
convention: ≡ (entered as ==), conde (entered as conde),
and fresh. Similarly, (run5 (q) body) and (run∗ (q) body)
are entered as (run 5 (q) body) and (run* (q) body).1

Core miniKanren extends Scheme with three operators:
≡, fresh, and conde. (One additional operator, eigen, is
introduced in section 2.2.) There is also run, which serves
as an interface between Scheme and miniKanren, and whose
value is a list.
≡ unifies two terms. fresh, which syntactically looks

like lambda, introduces lexically-scoped Scheme variables
that are bound to new logic variables; fresh also performs
conjunction of the relations within its body. Thus

(fresh (x y z) (≡ x z) (≡ 3 y))

would introduce logic variables x , y , and z , then associate x
with z and y with 3. This, however, is not a legal miniKanren
program—we must wrap a run around the entire expression.

(run1 (q) (fresh (x y z) (≡ x z) (≡ 3 y))) ⇒ (0)

The value returned is a list containing the single value 0 ; we
say that 0 is the reified value of the unbound query variable
q and thus represents any value. q also remains unbound in

(run1 (q) (fresh (x y) (≡ x q) (≡ 3 y))) ⇒ (0)

We can get back more interesting values by unifying the
query variable with another term.

(run1 (y)
(fresh (x z)

(≡ x z)
(≡ 3 y)))

(run1 (q)
(fresh (x z)

(≡ x z)
(≡ 3 z)
(≡ q x)))

(run1 (y)
(fresh (x y)

(≡ 4 x)
(≡ x y))

(≡ 3 y))

Each of these examples returns (3); in the rightmost ex-
ample, the y introduced by fresh is different from the y
introduced by run.

A run expression can return the empty list, indicating
that the body of the expression is logically inconsistent.

(run1 (x) (≡ 4 3)) ⇒ ()

1 It is conventional in Scheme for the names of predicates to
end with the ‘?’ character. We have therefore chosen to end the
names of miniKanren goals with a superscript o, which is meant
to resemble the top of a ‘?’. The superscript e in conde stands
for ‘every,’ since every conde clause may contribute answers.

(run1 (x) (≡ 5 x) (≡ 6 x)) ⇒ ()

We say that a logically inconsistent relation fails, while a
logically consistent relation, such as (≡ 3 3), succeeds.

conde, which resembles cond syntactically, is used to
produce multiple answers. Logically, conde can be thought
of as disjunctive normal form: each clause represents a dis-
junct, and is independent of the other clauses, with the rela-
tions within a clause acting as the conjuncts. For example,
this expression produces two answers.

(run2 (q)
(fresh (w x y)

(conde

((≡ ‘(,x ,w ,x) q)
(≡ y w))

((≡ ‘(,w ,x ,w) q)
(≡ y w))))) ⇒ ((0 1 0) (0 1 0))

Although the two conde lines are different, the values re-
turned are identical. This is because distinct reified unbound
variables are assigned distinct subscripts, increasing from
left to right—the numbering starts over again from zero
within each answer, which is why the reified value of x is

0 in the first answer but 1 in the second. The superscript
2 in run denotes the maximum length of the resultant list.
If the superscript ∗ is used, then there is no maximum im-
posed. This can easily lead to infinite loops.

(run∗ (q)
(let loop ()

(conde

((≡ #f q))
((≡ #t q))
((loop))))) ⇒ ⊥

If we replace ∗ by a natural number n, then an n-element list
of alternating #f’s and #t’s is returned. The first answer is
produced by the first conde clause, which associates q with
#f. To produce the second answer, the second conde clause is
tried. Since conde clauses are independent, the association
between q and #f made in the first clause is forgotten—we
say that q has been refreshed. In the third conde clause, q
is refreshed again.

We now look at several interesting examples that rely on
any o, which tries g an unbounded number of times.

(define any o

(λ (g)
(conde

(g)
((any o g)))))

Consider the first example,

(run∗ (q)
(conde

((any o (≡ #f q)))
((≡ #t q))))

which does not terminate because the call to any o succeeds
an unbounded number of times. If ∗ were replaced by 5,
then we would get (#t #f #f #f #f). (The user should not be
concerned with the order of the answers produced.)

Now consider

(run10 (q)
(any o

2 2013/11/16

(conde

((≡ 1 q))
((≡ 2 q))
((≡ 3 q))))) ⇒ (1 2 3 1 2 3 1 2 3 1)

Here the values 1, 2, and 3 are interleaved; our use of any o

ensures that this sequence is repeated indefinitely.
Even if a relation within a conde clause loops indefinitely

(or diverges), other conde clauses can contribute to the
answers returned by a run expression. For example,

(run3 (q)
(let ((never o (any o (≡ #f #t))))

(conde

((≡ 1 q))
(never o)
((conde

((≡ 2 q))
(never o)
((≡ 3 q)))))))

returns (1 2 3). Replacing run3 with run4 would cause
divergence, since never o would loop indefinitely looking for
the non-existent fourth answer.

2.2 Eigenvariables and Universal Quantification

We extend core miniKanren with a new operator used to ex-
press universal quantification, eigen. Syntactically, eigen is
similar to fresh, but introduces eigenvariables rather than
fresh logic variables.2 An eigenvariable can be thought of as
a lexically-scoped gensym (generated symbol): an eigenvari-
able e unifies only with itself, or with a fresh logic variable
introduced inside the scope of e.

We can represent the logical formula ∀X.X = X as the
miniKanren goal (eigen (X) (≡ X X)), which succeeds as
expected, since any eigenvariable can unify with itself.

We can represent ∀X.∃Y.X = Y as the goal

(eigen (X) (fresh (Y) (≡ X Y))),3

which succeeds as expected, since the eigenvariable X can
unify with any fresh logic variable introduced inside its scope
(such as Y).

We can represent ∃X.∀Y.X = Y as the goal

(fresh (X) (eigen (Y) (≡ X Y))).

This goal fails, as expected, since the eigenvariable Y cannot
unify with a fresh logic variable introduced outside of its
scope (such as X).4

Compound terms containing eigenvariables can be unified
with other terms as usual, provided that the eigenvariables

2 More on eigenvariables, in the context of λProlog, can be found
in Miller and Nadathur (2012).
3 The fresh operator was originally named exist, but the name
was changed to avoid confusion with the R6RS Scheme standard’s
exists function (also known as ormap). For a similar reason eigen
is not named forall.
4 The interaction between eigenvariables and the disequality (6≡)
and absent o constraints described in Byrd et al. (2012) is com-
plex, and is not handled by the current implementation of eigen.
Fortunately, the combinatory logic reducer can be implemented
using only unification, without requiring the 6≡, absent o, symbol o,
or number o constraints used in the relational interpreter of Byrd
et al. (2012)—indeed, this is one of the advantages of our ap-
proach. We will need eigen only for queries to the reducer, not
for the definition of the reducer.

follow the rules described above. In addition, a fresh logic
variable x must never be associated with a term contain-
ing an eigenvariable introduced inside the scope of x . For
example,

(eigen (A) (fresh (X) (≡ ‘(1 2 3 ,A 4) X))),

succeeds, since the eigenvariable A is introduced outside the
scope of X , but

(fresh (X) (eigen (A) (≡ ‘(1 2 3 ,A 4) X)))

fails, since A is introduced inside the scope of X .
Eigenvariables can never escape their scope, and therefore

can never appear in the reified output of a run expression.

2.3 Pattern-matching Syntax

Syntactically, miniKanren’s conde, fresh, and ≡ opera-
tors are designed to resemble Scheme’s cond, let, and =.
miniKanren programs can often be written more succinctly
using a pattern-matching syntax that can implicitly intro-
duce fresh logic variables, and implicitly performs disjunc-
tion and unification.5

In this paper we use defmatche, a variant of the pattern
matching syntax presented in Keep et al. (2009):

(defmatche (<relation-name> <id> . . .)
(<pattern> <goal> . . .)
<clause>
. . .
)

defmatche defines a new top-level relation, with zero or
more formal parameters <id> The body of the relation
comprises one or more <clause>s, each of which is of the
form (<pattern> <goal> . . .). The <pattern> of a clause
is any legal miniKanren term. The pattern is implicitly
quasiquoted; any unquoted identifiers in the pattern are
treated as fresh logic variables, whose scope is limited to
the pattern and goals of that clause. The right-hand-side
of each clause comprises zero or more miniKanren <goal>s.
The formal parameters<id> . . . are visible within the right-
hand-side goals of all clauses, but not within the patterns.

Semantically, the body of a defmatche represents a dis-
junction of clauses, with each clause representing a conjunc-
tion of its pattern and right-hand-side goals. A clause suc-
ceeds if its pattern successfully unifies with the current val-
ues of the formal parameters, and all right-hand-side goals
in the clause succeed (in the context of any new associations
for the logic variables in the pattern caused by the pattern’s
unification).

As an example, we use defmatche to succinctly define
append o, a relation on three lists l1 , l2 , and l3 that succeeds
if l1 ++ l2 = l3 .

(run∗ (q) (append o ’(w v x) q ’(w v x y z))) ⇒ ((y z))

(defmatche (append o l1 l2 l3)
((() ,l ,l))
(((,a . ,d) ,s (,a . ,res)) (append o d s res)))

The first clause of append o associates l2 with l3 if l1 uni-
fies with the empty list. The pattern of the second clause
matches if l1 unifies with the pair of fresh logic variables,

5 Our pattern-matching syntax is similar to that of Prolog. The
code for the combinatory logic reducer can easily be translated to
any Prolog implementation that includes universal quantification
and an efficient implementation of complete search, both of which
are needed for combinator synthesis.

3 2013/11/16

‘(,a . ,d), and l3 unifies with the pair of fresh logic variables,
‘(,a . ,res). These unifications associate the first element of
l1 with the first element of l3 . append o is then called recur-
sively on the remaining elements of l1 , the entire list l2 , and
the remaining elements of l3 .

The defmatche definition of append o is semantically
equivalent to this more verbose definition (although defmatche

may produce more efficient code):

(define append o

(λ (l1 l2 l3)
(conde

((fresh (l)
(≡ ’() l1)
(≡ l l2)
(≡ l l3)))

((fresh (a d s res)
(≡ ‘(,a . ,d) l1)
(≡ s l2)
(≡ ‘(,a . ,res) l3)
(append o d s res))))))

As we will see in section 4, the addition of univer-
sal quantification (eigen) and pattern-matching syntax
(defmatche) essentially turns miniKanren into a Domain-
Specific Language for implementing the rules of combina-
tory logic in a relational fashion. Any logic programming
language with universal quantification, pattern-matching,
and an efficient implementation of complete search would
also be suitable for this purpose.

Next we present a brief overview of combinatory logic,
and then show how combinatory logic can be implemented
in miniKanren.

3. Combinatory Logic

Introduced by Schönfinkel in the early 1920’s, combinatory
logic is perhaps the oldest formalism for expressing com-
putable functions, preceding both the λ-calculus and Tur-
ing Machines, but equivalent in power to both (Schönfinkel
1924). Standard texts on combinatory logic include Curry
and Feys (1958), Curry et al. (1972), Stenlund (1972),
Revesz (1988), Hindley and Seldin (2008), and Bimbó
(2012).

In the λ-calculus, a combinator is function with no free
variables—for example, the identity function λx.x. Unlike in
the λ-calculus, combinatory logic has no notion of variable
binding; instead, the identity combinator is represented as
the constant I, with an associated contraction axiom, Ix . x.
Two other standard combinators, K and S, have the con-
traction axioms Kxy . x and Sxyz . xz(yz), respectively.

A term in combinatory logic is either a combinator con-
stant (such as I), or an application MN of two terms M
and N . Parentheses are used to express grouping of pairs
of terms. By convention, application is left-associative: the
term KSK is equivalent to (KS)K.

A set of combinator constants forms a basis. The basis
{S K I} is complete, in that any computable function can be
represented as a term containing only the constants S, K,
and I. The basis {S K} is also complete—that is, I can be
represented as a term containing only the constants S and
K (as we shall see below). The basis {K I} is not complete,
however, as S cannot be represented as a term containing
only the constants K and I.

The contraction axioms can be used to rewrite terms. For
example, the axiom for the S combinator is Sxyz . xz(yz).

By this axiom, the term SK(IK)S can be contracted, with
x matching K, y matching IK, and z matching S.6 The re-
sulting contracted term is xz(yz)—in this case, KS(IKS).7

A contraction axiom can only be applied when the combi-
nator is supplied with sufficiently many “argument” terms.
For example, the term SSK cannot be contracted using the
axiom for S, since S must be supplied with three terms.

In addition to the contraction axioms, we will use the
standard one-step reduction and weak reduction relations
from combinatory logic. The one-step reduction relation .1w
performs a single contraction, anywhere in a term. The weak
reduction relation .w is the reflexive, transitive closure of
.1w. Figures 1, 2, and 3 show the contraction axioms for
the {S K I} basis, the .1w relation, and the .w relation, all
written as inference rules.

3.1 Combinatory Logic and the λ-Calculus

Combinatory logic has strong connections to the λ-calculus.
Any combinatory logic term can be translated to an equiv-
alent λ-calculus term, and the other way around. Our ap-
proach to combinator synthesis is performed entirely within
combinatory logic; however, it can be useful to convert syn-
thesized terms into equivalent λ-calculus terms. Translating
from λ-calculus to combinatory logic does not appear as
useful; we therefore do not include the standard “bracket”
abstraction rules for translating in this direction.

Translating a term from combinatory logic to call-by-
name λ-calculus is obvious: replace each combinator con-
stant in the term with a λ-calculus term equivalent to
that combinator’s contraction algorithm. For example, the
axiom for the S combinator is Sxyz . xz(yz); therefore,
each occurrence of S is replaced with λxyz.xz(yz). The
combinatory logic term S(KK) would therefore become
(λxyz.xz(yz)) (λxy.x λxy.x).

Translating a term from combinatory logic to call-by-
value λ-calculus is slightly trickier, since not all terms with
normal forms in call-by-name λ-calculus have normal forms
in call-by-value λ-calculus. For example, in the call-by-
name λ-calculus, Curry’s fixpoint combinator Y (Baren-
dregt 1984) is defined as λf.(λx.f(xx)) (λx.f(xx)). How-
ever, applying Y to any term in the call-by-value λ-calculus
results in a term with no normal form, which causes diver-
gence when evaluated in a call-by-value language such as
Scheme. This divergence is caused by the self-applications
(xx) present in Y. To avoid this problem, we can per-
form an η-expansion8 around each of the self-applications
in Y, resulting in the call-by-value fixpoint combinator Z:
λf.(λx.f(λv.(xx)v)) (λx.f(λv.(xx)v)).

We observe that, for the {S K I} basis, only contractions
of S can introduce self-application. Therefore, we can avoid
premature divergence in the call-by-value λ-calculus by per-
forming η-expansions within the body of the λ-term cor-

6 Given the left-associativity of application, the term SK(IK)S is
equivalent to ((SK)(IK))S.
7 The name “contraction” is somewhat misleading, in that the
resulting term may be smaller, larger, or the same size as the
original term.
8 The η-equivalence rule in the λ-calculus states that
M =η λx.Mx, provided that x does not occur free in M
(Barendregt 1984). For example, η-expanding the unary function
add1 in Scheme yields (λ (n) (add1 n)). If M has no normal
form in the call-by-value λ-calculus, η-expansion ensures the
resulting term has a normal form (and therefore does not diverge
in a call-by-value language like Scheme).

4 2013/11/16

responding to S: λxyzw.(λv.xzv λv.yzv)w. The conversion
rules for K and I remain unchanged.

Figures 4 and 5 show the inference rules for converting
combinatory logic terms to the call-by-name and call-by-
value λ-calculus, respectively.

4. Combinatory Logic in miniKanren

We are now ready to implement the combinatory logic
relations from section 3 in miniKanren. We begin with the
three critical relations from combinatory logic: ., .1w, and
.w.

The binary relation . in figure 1 represents the contrac-
tion axioms for the {S K I} basis; these inference rules can
be directly translated into the binary relation .o in fig-
ure 6.9 The .o relation succeeds if its first argument T unifies
with one of the terms ‘(I ,x), ‘((K ,x) ,y), or ‘(((S ,x) ,y) ,z),
(equivalent to the left-hand-sides of .: Ix, Kxy, and Sxyz),
and its second argument T̂ unifies with the correspond-
ing term x , x , or ‘((,x ,z) (,y ,z)) (equivalent to the right-
hand-sides of .: x, x, and xz(yz)). miniKanren uses Scheme
s-expressions to represent terms, which accounts for the
fully-parenthesized syntax. Also, recall from section 2.3 that
defmatche patterns are implicitly quasiquoted.

Similarly, the three inference rules of the binary relation
.1w in figure 2 correspond to the three defmatche clauses of
the binary relation .o1w in figure 7.10 The pattern portion of
a defmatche clause corresponds to the part of the inference
rule below the horizontal line (the consequent), while recur-
sive calls (or calls to other miniKanren relations) correspond
to the part above the horizontal line (the antecedent).

The two inference rules of the binary relation .w in
figure 3 correspond to the three defmatche clauses of the
binary relation .ow in figure 8.11 The second defmatche

clause requires a use of fresh to introduce a local logic
variable N used in the transitive closure of .o1w.

The 11 lines of miniKanren defining the relations ., .1w,
and .w allow us to perform program synthesis, as we will
see in section 4.1. We can also define miniKanren relations
for translating from combinatory logic to λ-calculus. The Lo

miniKanren relation in figure 9 corresponds to the call-by-
name L rules in figure 4, while the Loη relation in figure 10
corresponds to the call-by-value Lη rules in figure 5.12

4.1 (Some) Homework for Free

We are finally ready to synthesize programs in combinatory
logic. We begin with an exercise from a standard textbook
on combinatory logic (Hindley and Seldin 2008). This exer-
cise13, which is marked “Tricky” in the text, asks the reader
to construct combinatory logic terms B’ and W that satisfy
B’xyz .w y(xz) and Wxy .w xyy.

We can find a term that satisfies the definition of W using
the query:

(run1 (W) (eigen (x y) (.ow ‘((,W ,x) ,y) ‘((,x ,y) ,y))))
⇒ (((S S) (S K)))

9 The name .o is entered as contracto.
10 The name .o1w is entered as ->1wo.
11 The name .ow is entered as ->wo.
12 The names Lo and Loη are entered as Lo and L-etao.
13 Exercise 2.17b on p. 26.

This query returns in 3 milliseconds.14

The query for B’ looks similar:

(run1 (B̂) (eigen (x y z) (.ow ‘(((,B̂ ,x) ,y) ,z) ‘(,y (,x ,z)))))

Unlike the previous query, this query does not return, even
after running for many minutes. As with other forms of
program synthesis, not all queries are equally expensive,
even if they look similar syntactically. Still, we can be happy
that miniKanren solved half of our homework problem for
us, after we spent only a few seconds typing in a query.

Now that we are warmed up, we are ready to generate
more interesting programs.

4.2 Synthesizing Fixpoint Combinators

The problem that led us to consider combinatory logic is
that of synthesizing fixpoint combinators. Barendregt (1984)
gives the following definition for a fixpoint combinator, F :

∃F.∀X.FX = X(FX)

We can express this definition as the query:

(run1 (F) (eigen (X) (.ow ‘(,F ,X) ‘(,X (,F ,X))))) ⇒
(((S I) (((S (S (K (S I)))) I) ((S (S (K (S I)))) I))))

This query takes roughly eight minutes, using non-
pattern-matching versions of ., .1w, and .w (which perform
fewer unifications than the versions using defmatche, which
is not as efficient as it could be).

If we take an educated guess, and assume there may be a
fixpoint combinator F that is equal to another combinator
U applied to itself (that is, F = UU), we end up with the
query

(run 1 (F)
(fresh (U)

(eigen (x)
(≡ ‘(,U ,U) F)
(.ow ‘(,F ,x) ‘(,x (,F ,x))))))

⇒
((((S (S (K (S I)))) I)

((S (S (K (S I)))) I)))

The self-application hint F = UU reduces the running time
from 8 minutes to about 20 seconds.

Combining our original fixpoint query with our Loη rela-
tion, we can generate a fixpoint combinator in combinatory
logic, translate it to a term in the call-by-value λ-calculus,
and then use the resulting combinator to run factorial in
Scheme:

(let ((FV (eval (car (run 1 (FV)
(fresh (F)

(eigen (x)
(.ow ‘(,F ,x) ‘(,x (,F ,x)))
(Loη F FV)))))

(environment ’(rnrs)))))
((FV (λ (f)

(λ (n)
(if (= n 0)

1
(∗ n (f (− n 1)))))))

5)) ⇒ 120

14 Running under 64-bit build of Vicare Scheme 0.1d2+ (using
(optimize-level 2)), on a MacBook Pro with a 2.8 GHz Intel Core
i7 and 16 GB RAM, running OS X 10.9.

5 2013/11/16

Ix . x (.-I)

Kxy . x (.-K)

Sxyz . xz(yz) (.-S)

Figure 1. Contraction

M . M ′

M .1w M
′ (.1w-contraction)

M .1w M
′

MN .1w M
′N

(.1w-left)

N .1w N
′

MN .1w MN ′
(.1w-right)

Figure 2. One-step Reduction

M .w M (.w-reflexive)

M .1w N N .w P

M .w P
(.w-transitive)

Figure 3. Weak Reduction

I L λx.x (L-I)

K L λxy.x (L-K)

S L λxyz.xz(yz) (L-S)

M L M ′ N L N ′

MN L M ′N ′
(L-compound)

Figure 4. Conversion to Call-by-Name λ-Calculus

I Lη λx.x (Lη-I)

K Lη λxy.x (Lη-K)

S Lη λxyzw.(λv.xzv λv.yzv)w (Lη-S)

M Lη M
′ N Lη N

′

MN Lη M
′N ′

(Lη-compound)

Figure 5. Conversion to Call-by-Value λ-Calculus

(defmatche (.o T T̂)
(((I ,x) ,x))
((((K ,x) ,y) ,x))
(((((S ,x) ,y) ,z) ((,x ,z) (,y ,z)))))

Figure 6. Contraction (miniKanren)

(defmatche (.o1w T T̂)

((,M ,M̂) (.o M M̂))

(((,M ,N) (,M̂ ,N)) (.o1w M M̂))

(((,M ,N) (,M ,N̂)) (.o1w N N̂)))

Figure 7. One-step Reduction (miniKanren)

(defmatche (.ow T T̂)
((,M ,M))
((,M ,P) (fresh (N) (.o1w M N) (.ow N P))))

Figure 8. Weak Reduction (miniKanren)

(defmatche (Lo T T̂)
((I (λ (x) x)))
((K (λ (x) (λ (y) x))))
((S (λ (x) (λ (y) (λ (z) ((x z) (y z)))))))

(((,M ,N) (,M̂ ,N̂)) (Lo M M̂) (Lo N N̂)))

Figure 9. Conversion to Call-by-Name λ-Calculus
(miniKanren)

(defmatche (Loη T T̂)
((I (λ (x) x)))
((K (λ (x) (λ (y) x))))
((S (λ (x)

(λ (y)
(λ (z)

(λ (w)
(((λ (v) ((x z) v))

(λ (v) ((y z) v)))
w)))))))

(((,M ,N) (,M̂ ,N̂)) (Loη M M̂) (Loη N N̂)))

Figure 10. Conversion to Call-by-Value λ-Calculus
(miniKanren)

6 2013/11/16

5. Performance

Our approach to combinator synthesis is limited by the fact
that the search tree grows exponentially in the size of the
combinators being synthesized. Even worse, a query whose
specification does not match any combinator will diverge.
There is no way around these limitations; they reflect the
structure of combinatory logic, and the undecidability of
universal computation.

Given these limitations, it may seem that combinator
synthesis is a hopeless problem. However, there are several
mitigating factors that can help us generate combinators
faster than might otherwise seem reasonable.

First, queries sharing structure between the “input” term
and the “output” term can fail fast, resulting in aggressive
pruning of the search tree. This is evident in the fixpoint
combinator query,

(run1 (F) (eigen (X) (.ow ‘(,F ,X) ‘(,X (,F ,X))))),

Here, the sub-term ‘(,F ,X) appears on both sides of the
call to the .ow relation. This structure allows the query to
return much faster, and with much less memory usage, than
if miniKanren had performed näıve “guess and check”-style
search. This sharing of structure is also evident in the quine-
generating query from Byrd et al. (2012):

(run1 (q) (eval-exp o q ’() q))

This query generates a quine in approximately one second,
which is orders of magnitude faster than for näıve “guess
and check”-style search. The self-application hint F = UU
for generating a fixpoint combinator (section 4.2) is another
example of exploiting the structure of the query.

Secondly, the pure logic programming approach we use is
implicitly parallel. In theory, at least, we could try generat-
ing a combinator using many different combinator bases in
parallel; larger bases have a larger branching factor for the
search space, but may result in a smaller term (and therefore
a shallower search).

6. Conclusion

The definitions of the .o, .o1w, and .ow relations are remark-
able for their brevity, and for their one-to-one correspon-
dence with the inference rules of combinatory logic. The
succinctness of these definitions belies the complexity of the
underlying miniKanren implementation required to perform
program synthesis—for example, to perform miniKanren’s
complete, interleaving search. In Vicare Scheme15, the 4-
line definition of .o expands to 143 lines of Scheme code,
the 4-line definition of .o1w expands to 158 lines, the 3-
line definition of .ow expands to 132 lines, and the one-line
query for synthesizing fixpoint combinators expands into 48
lines. These 12 lines of miniKanren code expand into 481
lines of Scheme code, not counting the functions that im-
plement miniKanren’s constraint-solving, stream-handling,
and reification algorithms. Each defmatche/query line is
equivalent to approximately 40 lines of Scheme code, illus-
trating the point that miniKanren, extended with eigen and
defmatche, is essentially a domain-specific language for im-
plementing combinatory logic in a relational manner.

This observation should be understood in the context of
two other points. First, the relational interpreters presented

15 Vicare Scheme version 0.1d2+, 64-bit (revision
08bd828acfa9382324150b41f4e86c540c10a886, build 2013-08-
27

in Byrd et al. (2012) are far more complicated than the .o,
.o1w, and .ow relations. These relational interpreters require
careful handling of environments and term representation
(and the subtle interactions between the two). Implement-
ing small-step versions of the interpreters—required for syn-
thesizing fixpoint combinators, for example—is more com-
plicated still. A substitution-based small-step interpreter
requires nominal logic, higher-order abstract syntax, De
Bruijn indices, or an equivalent technique in order to im-
plement capture-avoiding substitution. These approaches ei-
ther complicate the implementation of miniKanren (as in
αKanren, for nominal logic programming (Byrd and Fried-
man 2007)), the implementation of the interpreter, or both,
and generally complicate interpretation of answers, espe-
cially those containing fresh logic variables. Alternatively,
the small-step interpreter could be written in the style of a
CEK machine (Felleisen 1987), using an environment and an
explicit continuation. This also complicates the interpreter;
furthermore, the explicit continuation can break the strong
connection between expression argument and value argu-
ment that allows the search tree to be pruned aggressively
when performing program synthesis.

The second point is that the code in this paper can be
easily translated to any logic programming language that
supports both universal quantification and complete search.
Prolog uses an incomplete depth-first strategy that can eas-
ily diverge, even when there are answers to be found. How-
ever, many Prolog systems implement some form of complete
search in addition to depth-first search. Implementation of
universal quantification seems less consistent between Pro-
log implementations; λProlog (Miller and Nadathur 2012)
is one system that implements eigenvariables as described
in section 2.2. Any sufficiently featureful Prolog system can
therefore be consider a domain-specific language for imple-
menting combinatory logic relationally.

Even logic systems that do not implement complete
search can be used for combinator synthesis, by imple-
menting depth-limited search (or incrementally-deepening
depth-first search) on top of standard depth-first search.
Nada Amin has recently used this technique to perform
simple combinator synthesis in the Twelf (Pfenning and
Schürmann 1999) theorem prover, using the .o, .o1w, and
.ow relations from this paper, and using Twelf’s support
for higher-order abstract syntax to express universal quan-
tification. Alas, Twelf’s search seems too slow for fixpoint
combinator synthesis to be practical.

Several other researchers have used related approaches
to program synthesis. Kiselyov (2013) has written a Haskell
program to enumerate fixpoint combinators in the λ-
calculus; unlike in our approach, his code is designed specif-
ically for generating combinators. This means that the gen-
erator is more efficient, but loses the direct connection be-
tween the inference rules and implementation that we feel
is important.

Closer in spirit to our work, a group of European re-
searchers has recently published a number of papers on com-
binator synthesis, with applications to program synthesis for
software engineering (Cégielski and Durand 2012; Düdder
et al. 2012, 2013a,b; Graham-Lengrand and Paolini 2013;
Rehof and Urzyczyn 2011, 2012). Their work is similar to
ours, in that they implement a logic program (in this case, in
Prolog) that synthesizes combinators in combinatory logic
from high-level specifications. Their approach differs from
ours in that they use type habitation of intersection types
to perform their combinator synthesis. In other words, their

7 2013/11/16

queries take the form of type specifications, and their synthe-
sis tool performs type inference to find a combinatory logic
term with the matching type. It may be possible to combine
the type habitation approach to synthesis with our combi-
nator reduction-based approach to improve performance of
synthesis.

In conclusion, our work greatly simplifies the approach
to relational program synthesis demonstrated in Byrd et al.
(2012). Our approach is also much more flexible. For exam-
ple, the quine-generating query

(run1 (q) (eval-exp o q ’() q))

from Byrd et al. (2012) is completely symmetrical—indeed,
it is the simplest meaningful query using eval-exp o, in terms
of the number of distinct tokens. Unfortunately, since eval-
exp o is a big-step interpreter, it is incapable of synthesizing
many programs that require more complex queries, such
as fixpoint combinators. In contrast, our approach handles
richer queries, such as

(run1 (F) (eigen (X) (.ow ‘(,F ,X) ‘(,X (,F ,X))))),

which directly mirrors the fixpoint combinator definition
∃F.∀X.FX = X(FX).

Our work, along with the work presented in Byrd et al.
(2012), shows that it is possible to synthesize interesting pro-
grams using reducers and interpreters written in a relational
style. Much further work remains to be done, including de-
veloping techniques for writing small-step interpreters for
the λ-calculus and Scheme, and improving the performance
of program synthesis through optimizations and paralleliza-
tion.

References
Hendrik Pieter Barendregt. The Lambda Calculus – Its Syntax

and Semantics, volume 103 of Studies in Logic and the Foun-
dations of Mathematics. North-Holland, 1984.

Katalin Bimbó. Combinatory Logic: Pure, Applied, and Typed.
Discrete Mathematics and its Applications. CRC Press, Boca
Raton, FL, USA, 2012.

William E. Byrd. Relational Programming in miniKanren: Tech-
niques, Applications, and Implementations. PhD thesis, Indi-
ana University, 2009.

William E. Byrd and Daniel P. Friedman. From variadic functions
to variadic relations: A miniKanren perspective. In Robby
Findler, editor, Proceedings of the 2006 Scheme and Func-
tional Programming Workshop, University of Chicago Tech-
nical Report TR-2006-06, pages 105–117, 2006.

William E. Byrd and Daniel P. Friedman. αKanren: A fresh name
in nominal logic programming. In Proceedings of the 2007
Workshop on Scheme and Functional Programming, Univer-
site Laval Technical Report DIUL-RT-0701, pages 79–90 (see
also http://www.cs.indiana.edu/~webyrd for improvements),
2007.

William E. Byrd, Eric Holk, and Daniel P. Friedman. miniKanren,
live and untagged: Quine generation via relational interpreters
(programming pearl). In 2012 Workshop on Scheme and
Functional Programming, September 2012.

Patrick Cégielski and Arnaud Durand, editors. Computer Science
Logic (CSL’12) - 26th International Workshop/21st Annual
Conference of the EACSL, CSL 2012, September 3-6, 2012,
Fontainebleau, France, volume 16 of LIPIcs, 2012. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik. ISBN 978-3-
939897-42-2.

H. B. Curry and R. Feys. Combinatory Logic, Volume I. North-
Holland, 1958. Second printing 1968.

H. B. Curry, J. R. Hindley, and J. P. Seldin. Combinatory Logic,
Volume II. North-Holland, 1972.

Boris Düdder, Moritz Martens, Jakob Rehof, and Pawel Urzy-
czyn. Bounded combinatory logic. In Cégielski and Durand
(2012), pages 243–258. ISBN 978-3-939897-42-2.

Boris Düdder, Oliver Garbe, Moritz Martens, Jakob Rehof, and
Pawel Urzyczyn. Using inhabitation in bounded combinatory
logic with intersection types for composition synthesis. In
Graham-Lengrand and Paolini (2013), pages 18–34.

Boris Düdder, Moritz Martens, and Jakob Rehof. Intersection
type matching with subtyping. In Masahito Hasegawa, editor,
TLCA, volume 7941 of Lecture Notes in Computer Science,
pages 125–139. Springer, 2013b. ISBN 978-3-642-38945-0, 978-
3-642-38946-7.

Matthias Felleisen. The calculi of λv-CS Conversion: A syn-
tactic theory of control and state in imperative higher-order
programming languages. PhD thesis, Indianapolis, IN, USA,
1987.

Daniel P. Friedman, William E. Byrd, and Oleg Kiselyov. The
Reasoned Schemer. The MIT Press, Cambridge, MA, 2005.

Stéphane Graham-Lengrand and Luca Paolini, editors. Proceed-
ings Sixth Workshop on Intersection Types and Related Sys-
tems, ITRS 2013, Dubrovnik, Croatia, 29th June 2012, volume
121 of EPTCS, 2013.

J. Roger Hindley and Jonathan P. Seldin. Lambda-Calculus and
Combinators: An Introduction. Cambridge University Press,
New York, NY, USA, second edition, 2008.

Douglas R. Hofstadter. Gödel, Escher, Bach : an eternal golden
braid. Basic, 1979.

Andrew W. Keep, Michael D. Adams, Lindsey Kuper, William E.
Byrd, and Daniel P. Friedman. A pattern-matcher for
miniKanren -or- How to get into trouble with CPS macros.
In In Proceedings of the 2009 Workshop on Scheme and Func-
tional Programming, Cal Poly Technical Report CPSLO-CSC-
09-03, pages 37–45, 2009.

Oleg Kiselyov. Many faces of the fixed-point combi-
nator: Fix-point combinators are infinitely many and
recursively-enumerable. http://okmij.org/ftp/Computation/
fixed-point-combinators.html#many-fixes, 2013.

John McCarthy. A micro-manual for lisp - not the whole truth.
SIGPLAN Not., 13(8):215–216, August 1978.

Dale Miller and Gopalan Nadathur. Programming with Higher-
Order Logic. Cambridge University Press, 2012.

Frank Pfenning and Carsten Schürmann. System description:
Twelf a meta-logical framework for deductive systems. In Au-
tomated Deduction CADE-16, volume 1632 of Lecture Notes
in Computer Science, pages 202–206. Springer Berlin Heidel-
berg, 1999.

Jakob Rehof and Pawel Urzyczyn. Finite combinatory logic with
intersection types. In C.-H. Luke Ong, editor, TLCA, volume
6690 of Lecture Notes in Computer Science, pages 169–183.
Springer, 2011. ISBN 978-3-642-21690-9.

Jakob Rehof and Pawel Urzyczyn. The complexity of inhabita-
tion with explicit intersection. In Robert L. Constable and
Alexandra Silva, editors, Logic and Program Semantics, vol-
ume 7230 of Lecture Notes in Computer Science, pages 256–
270. Springer, 2012. ISBN 978-3-642-29484-6.

G. Revesz. Lambda-calculus, Combinators, and Functional Pro-
gramming. Cambridge University Press, Cambridge, UK, 1988.

Hartley Rogers, Jr. Theory of recursive functions and effective
computability. McGraw-Hill, New York, NY, 1967.

Moses Schönfinkel. On the Building Blocks of Mathematical
Logic. In Jean van Heijenoort, editor, From Frege to Gödel:
A Source Book in Mathematical Logic, 1879–1931, pages 355–
366. 1924.

8 2013/11/16

Sören Stenlund. Combinators, λ-Terms and Proof Theory. D.
Reidel, 1972.

Gary P. Thompson II. The quine page (self-reproducing code).
http://www.nyx.org/~gthompso/quine.htm.

9

