
miniKanren, Live and Untagged

Quine Generation via Relational Interpreters
(Programming Pearl)

William E. Byrd Eric Holk Daniel P. Friedman

School of Informatics and Computing, Indiana University, Bloomington, IN 47405

{webyrd,eholk,dfried}@cs.indiana.edu

Abstract

We present relational interpreters for several subsets of
Scheme, written in the pure logic programming language
miniKanren. We demonstrate these interpreters running
“backwards”—that is, generating programs that evaluate
to a specified value—and show how the interpreters can
trivially generate quines (programs that evaluate to them-
selves). We demonstrate how to transform environment-
passing interpreters written in Scheme into relational inter-
preters written in miniKanren. We show how constraint ex-
tensions to core miniKanren can be used to allow shadowing
of the interpreter’s primitive forms (using the absent o tree
constraint), and to avoid having to tag expressions in the
languages being interpreted (using disequality constraints
and symbol/number type-constraints), simplifying the in-
terpreters and eliminating the need for parsers/unparsers.

We provide four appendices to make the code in the paper
completely self-contained. Three of these appendices contain
new code: the complete implementation of core miniKanren
extended with the new constraints; an extended relational
interpreter capable of running factorial and doing list pro-
cessing; and a simple pattern matcher that uses Dijkstra
guards. The other appendix presents our preferred version of
code that has been presented elsewhere: the miniKanren re-
lational arithmetic system used in the extended interpreter.

Categories and Subject Descriptors D.1.6 [Program-
ming Techniques]: Logic Programming; D.1.1 [Program-
ming Techniques]: Applicative (Functional) Programming

General Terms Languages

Keywords quines, Scheme, miniKanren, relational pro-
gramming, logic programming, interpreters, tagging

1. Introduction

A quine is a program that evaluates to itself (Hofstadter
1979; Thompson II); the simplest Scheme quines are self-

evaluating literals, such as numbers and booleans. A classic
non-trivial quine (Thompson II) is:

(define quinec
’((lambda (x)

(list x (list (quote quote) x)))
(quote

(lambda (x)
(list x (list (quote quote) x))))))

We can easily verify that quinec evaluates to itself:

(equal? (eval quinec) quinec) ⇒ #t

For decades programmers have amused themselves by
writing quines in countless programming languages. Some
quines, such as those featured in the International Obfus-
cated C Code Contest (Broukhis et al.), are intentionally
baroque. Here we demonstrate a disciplined approach to the
problem: we show how to translate a standard environment-
passing interpreter written as a Scheme function into a re-
lation in the pure logic programming language miniKanren
(Byrd 2009; Friedman et al. 2005), then show how this re-
lational interpreter can be used, without modification, to
trivially generate quines.1

We also show how to generate twines (twin quines), which
are distinct programs p and q that evaluate to each other,
and thrines, which are distinct programs p, q , and r such
that p evaluates to q , q evaluates to r , and r evaluates to p.

While generating quines is fun and interesting, our ap-
proach also illustrates advanced techniques of relational pro-
gramming, such as translating functional programs into re-
lational programs, and using constraints to avoid having to
tag the expressions being interpreted. This last point is espe-
cially important, as tagging implies the need to write parsers
and unparsers, and because tagging the application line of
the interpreter greatly complicates the handling of quote
and list . Our use of constraints also has the important ben-
efit of properly handling shadowing of the interpreter’s built-
in primitives, such as list , quote, and lambda.

Our approach requires adding several constraint oper-
ators to core miniKanren. We have previously presented
disequality constraints in cKanren (Alvis et al. 2011), a
general constraint logic programming (Apt 2003) frame-
work inspired by miniKanren; the symbol o, number o, and

1 For readers already familiar with miniKanren, the punchline of
the paper can be summarized by the one-liner:

(equal? (caar (run1 (q) (eval-exp o q ’() q))) quinec) ⇒ #t

(More accurately, the generated quine is α-equivalent to quinec.)

1



absent o constraints we introduce are also straightforward to
implement in cKanren. However, we have found that core
miniKanren augmented with these four constraints is suf-
ficient for implementing a wide variety of interesting pro-
grams, including interpreters and inferencers. This extended
miniKanren is conceptually simpler than cKanren, and its
implementation is easier to understand and modify. Pro-
grammers needing to use domain-specific constraints, such
as arithmetic over finite domains (CLP(FD)), will find that
the techniques described here, up to and including quine
generation, work equally well in cKanren.

Our paper makes the following contributions:

• We extend the miniKanren core language with four con-
straint operators (section 2.2): the disequality constraint
6≡; type constraints symbol o and number o, which are sim-
ilar in spirit to Scheme’s symbol? and number? pred-
icates; and the tree constraint absent o, which ensures
a symbol tag does not occur inside a term t . These
constraints are extremely useful when writing logic pro-
grams, especially interpreters and type inferencers.
• We describe and demonstrate our methodology for trans-

lating interpreters from Scheme to miniKanren (sec-
tion 3). Our methodology is equally useful for translating
type inferencers.
• We show how 6≡, symbol o, and number o can be used when

writing an interpreter (or type inferencer) to avoid having
to tag expressions in the language being interpreted, and
how absent o can be used to allow shadowing of primitive
forms (section 3).
• We present relational interpreters for three subsets

of Scheme: the call-by-value λ-calculus (section 3);
λ-calculus extended with list and quote (section 4);
and an extended language supporting pairs, condition-
als, and arithmetic operators, and capable of running
factorial (appendix A). The relational arithmetic sys-
tem (appendix B) used in the third interpreter was first
presented in Friedman et al. (2005); we include it for
completeness.
• We demonstrate these interpreters running “backwards”

(generating input expressions from the expected output),
and show how the interpreters supporting list and quote
can be used to trivially generate quines (section 5 and
appendix A).
• We provide a complete, concise, and easily modifi-

able implementation of core miniKanren extended with
6≡, symbol o, number o, and absent o constraints (ap-
pendix D).
• We provide a generalized version of the pmatch pattern

matcher first presented in Byrd and Friedman (2007); the
updated pmatch, now called dmatch (appendix C), is
based on Dijkstra guards (Dijkstra 1975). This gener-
alized pattern matcher properly handles quote expres-
sions, which is important when writing evaluators, infer-
encers, and reducers.

We begin by introducing the extended miniKanren lan-
guage we will use to write the relational interpreters.

2. The Extended miniKanren Language

In this section we briefly review the core miniKanren lan-
guage (section 2.1), then introduce the 6≡, symbol o, number o,
and absent o constraints used in the relational interpreters
(section 2.2). Readers already familiar with miniKanren can
safely skip to section 2.2 to learn about the new constraints,

while those wishing to learn more about miniKanren should
see Byrd (2009), Byrd and Friedman (2006) (from which this
subsection has been adapted), and Friedman et al. (2005).

2.1 miniKanren Refresher

Our code uses the following typographic conventions. Lexi-
cal variables are in italic, forms are in boldface, and quoted
symbols are in sans serif. By our convention, names of rela-
tions end with a superscript o—for example any o, which is
entered as anyo. Some relational operators do not follow this
convention: ≡ (entered as ==), conde (entered as conde),
and fresh. Similarly, (run5 (q) body) and (run∗ (q) body)
are entered as (run 5 (q) body) and (run* (q) body).2

Core miniKanren extends Scheme with three operators:
≡, fresh, and conde. (Four additional constraint operators
are introduced in section 2.2.) There is also run, which
serves as an interface between Scheme and miniKanren, and
whose value is a list.
≡ unifies two terms. fresh, which syntactically looks

like lambda, introduces lexically-scoped Scheme variables
that are bound to new logic variables; fresh also performs
conjunction of the relations within its body. Thus

(fresh (x y z ) (≡ x z ) (≡ 3 y))

would introduce logic variables x , y , and z , then associate x
with z and y with 3. This, however, is not a legal miniKanren
program—we must wrap a run around the entire expression.

(run1 (q) (fresh (x y z ) (≡ x z ) (≡ 3 y))) ⇒ ( 0)

The value returned is a list containing the single value 0 ; we
say that 0 is the reified value of the unbound query variable
q and thus represents any value. q also remains unbound in

(run1 (q) (fresh (x y) (≡ x q) (≡ 3 y))) ⇒ ( 0)

We can get back more interesting values by unifying the
query variable with another term.

(run1 (y)
(fresh (x z )

(≡ x z )
(≡ 3 y)))

(run1 (q)
(fresh (x z )

(≡ x z )
(≡ 3 z )
(≡ q x )))

(run1 (y)
(fresh (x y)

(≡ 4 x )
(≡ x y))

(≡ 3 y))

Each of these examples returns (3); in the rightmost ex-
ample, the y introduced by fresh is different from the y
introduced by run.

A run expression can return the empty list, indicating
that the body of the expression is logically inconsistent.

(run1 (x ) (≡ 4 3)) ⇒ ()

(run1 (x ) (≡ 5 x ) (≡ 6 x )) ⇒ ()

We say that a logically inconsistent relation fails, while a
logically consistent relation, such as (≡ 3 3), succeeds.

conde, which resembles cond syntactically, is used to
produce multiple answers. Logically, conde can be thought
of as disjunctive normal form: each clause represents a dis-
junct, and is independent of the other clauses, with the rela-
tions within a clause acting as the conjuncts. For example,
this expression produces two answers.

2 It is conventional in Scheme for the names of predicates to
end with the ‘?’ character. We have therefore chosen to end the
names of miniKanren goals with a superscript o, which is meant
to resemble the top of a ‘?’. The superscript e in conde stands
for ‘every,’ since every conde clause may contribute answers.

2



(run2 (q)
(fresh (w x y)

(conde

((≡ ‘(,x ,w ,x ) q)
(≡ y w))

((≡ ‘(,w ,x ,w) q)
(≡ y w))))) ⇒ (( 0 1 0) ( 0 1 0))

Although the two conde lines are different, the values re-
turned are identical. This is because distinct reified unbound
variables are assigned distinct subscripts, increasing from
left to right—the numbering starts over again from zero
within each answer, which is why the reified value of x is

0 in the first answer but 1 in the second. The superscript
2 in run denotes the maximum length of the resultant list.
If the superscript ∗ is used, then there is no maximum im-
posed. This can easily lead to infinite loops.

(run∗ (q)
(let loop ()

(conde

((≡ #f q))
((≡ #t q))
((loop))))) ⇒ ⊥

If we replace ∗ by a natural number n, then an n-element list
of alternating #f’s and #t’s is returned. The first answer is
produced by the first conde clause, which associates q with
#f. To produce the second answer, the second conde clause is
tried. Since conde clauses are independent, the association
between q and #f made in the first clause is forgotten—we
say that q has been refreshed. In the third conde clause, q
is refreshed again.

We now look at several interesting examples that rely on
any o, which tries g an unbounded number of times.

(define any o

(lambda (g)
(conde

(g)
((any o g)))))

Consider the first example,

(run∗ (q)
(conde

((any o (≡ #f q)))
((≡ #t q))))

which does not terminate because the call to any o succeeds
an unbounded number of times. If ∗ were replaced by 5,
then we would get (#t #f #f #f #f). (The user should not be
concerned with the order of the answers produced.)

Now consider

(run10 (q)
(any o

(conde

((≡ 1 q))
((≡ 2 q))
((≡ 3 q))))) ⇒ (1 2 3 1 2 3 1 2 3 1)

Here the values 1, 2, and 3 are interleaved; our use of any o

ensures that this sequence is repeated indefinitely.
Even if a relation within a conde clause loops indefinitely

(or diverges), other conde clauses can contribute to the
answers returned by a run expression. For example,

(run3 (q)
(let ((never o (any o (≡ #f #t))))

(conde

((≡ 1 q))
(never o)
((conde

((≡ 2 q))
(never o)
((≡ 3 q)))))))

returns (1 2 3). Replacing run3 with run4 would cause
divergence, since never o would loop indefinitely looking for
the non-existent fourth answer.

2.2 Additional Constraint Operators

We extend core miniKanren with four constraint opera-
tors: the disequality constraint 6≡ (previously described in
the context of the cKanren constraint logic programming
framework (Alvis et al. 2011)); type constraints symbol o and
number o, which are the miniKanren equivalent of Scheme’s
symbol? and number? type predicates; and absent o, which
ensures a symbol tag does not occur in a term t .

We begin with the symbol o type constraint.

(run∗ (q) (symbol o q)) ⇒ (( 0 (sym 0)))

The single answer ( 0 (sym 0)) indicates that q remains
unbound, and also that q represents a symbol. Any attempt
to associate q with a non-symbol value should therefore lead
to failure.

(run∗ (q)
(symbol o q)
(≡ 4 q)) ⇒ ()

(run∗ (q)
(symbol o q)
(number o q)) ⇒ ()

If we were to replace all occurrences of symbol o by
number o in the three examples above, the new answers pro-
duced would be (( 0 (num 0))), (4), and (( 0 (num 0))),
respectively.

Next we consider the disequality constraint 6≡.

(run∗ (p) (6≡ p 1)) ⇒ (( 0 (6≡ (( 0 1)))))

The answer states that p remains unbound, but cannot be
associated with 1. Of course, violating the constraint leads
to failure:

(run∗ (p) (6≡ 1 p) (≡ 1 p)) ⇒ ()

A slightly more complicated example is a disequality
constraint between two lists.

(run∗ (q)
(fresh (p r)

( 6≡ ’(1 2) ‘(,p ,r))
(≡ ‘(,p ,r) q))) ⇒ ((( 0 1) (6≡ (( 0 1) ( 1 2)))))

The answer states that p and r are unbound, and that
p cannot be associated with 1 while r is associated with
2 (and the other way around). We would get the same
answer if we were to replace ( 6≡ ’(1 2) ‘(,p ,r)) by either
(6≡ ’((1) (2)) ‘((,p) (,r))) or ( 6≡ ‘((1) (,r)) ‘((,p) (2))).

Now consider the run expression

(run∗ (q)
(fresh (p r)

( 6≡ ’(1 2) ‘(,p ,r))
(≡ 1 p)
(≡ ‘(,p ,r) q))) ⇒ (((1 0) (6≡ (( 0 2)))))

3



If we also associate r with 2, the run expression fails.

(run∗ (q)
(fresh (p r)

( 6≡ ’(1 2) ‘(,p ,r))
(≡ 1 p)
(≡ 2 r)
(≡ ‘(,p ,r) q))) ⇒ ()

Now consider what happens when (≡ 2 r) is replaced
by (symbol o r) in the previous example. Then the run ex-
pression succeeds with the answer (((1 0) (sym 0))) which
states that r can only be associated with a symbol. The
reified constraint (6≡ (( 0 2))) (stating that r cannot be as-
sociated with 2) is not included in the answer, since it is
subsumed by the constraint that r must be a symbol.

Finally we consider absent o, which ensures a symbol tag
does not appear in a term t . Assume we have a term q
containing predators such as jackals and leopards, and we
desire to keep gentle pandas out of this dangerous term. We
can use absent o to ensure that this will occur.

(run∗ (q)
(fresh (x y)

(≡ ‘(jackal (,y leopard ,x )) q)
(absent o ’panda q)))

⇒
(((jackal ( 0 leopard 1))

(absent panda 0)
(absent panda 1)))

The answer states that the two unbound variables, x and
y , cannot be associated with a term that contains the term
panda. If we violate this constraint by associating x with
panda (or with a list containing panda), the run expression
no longer returns any answers, keeping the pandas safe.

(run∗ (q)
(fresh (x y)

(≡ ‘(jackal (,y leopard ,x )) q)
(absent o ’panda q)
(≡ ’panda x ))) ⇒ ()

If x is known to be a symbol, the absent o constraint on x
can be simplified to a disequality constraint between x and
panda.

(run∗ (q)
(fresh (x y)

(≡ ‘(jackal (,y leopard ,x )) q)
(absent o ’panda q)
(symbol o x )))

⇒
(((jackal ( 0 leopard 1))
( 6≡ (( 1 panda)))
(absent panda 0)
(sym 1)))

The answer still contains the full absent o constraint on y ;
violating this constraint does indeed cause failure.

(run∗ (q)
(fresh (x y z )

(≡ ‘(jackal (,y leopard ,x )) q)
(absent o ’panda q)
(symbol o x )
(≡ ‘(c ,z d) y)
(≡ ’panda z ))) ⇒ ()

3. Translating an Interpreter from
Scheme to miniKanren

In this section we start with a standard environment-passing
interpreter for the call-by-value λ-calculus, then show how
the interpreter can be translated into miniKanren in order
to run “backwards.”

We begin by defining variable lookup in an environment
represented as an association list.

(define lookup
(lambda (x env)

(dmatch env
(() (error ’lookup "unbound variable"))
(((,y . ,v) . ,rest) (guard (eq? y x ))
v)

(((,y . ,v) . ,rest) (guard (not (eq? y x )))
(lookup x rest)))))

lookup uses dmatch (appendix C), a simple pattern matcher
with guards in the style of Dijkstra’s Guarded Commands
(Dijkstra 1975). dmatch ensures that the patterns and op-
tional guards of different clauses do not overlap.3 This non-
overlapping property ensures that the ordering of the clauses
does not matter, and is required for writing correct relational
programs (Byrd 2009). By ensuring the non-overlapping
property holds in the Scheme version of the interpreter, we
simplify the translation to miniKanren.

Now that we have defined lookup, we can write our simple
interpreter using dmatch.

(define eval-exp
(lambda (exp env)

(dmatch exp
((,rator ,rand)
(let ((proc (eval-exp rator env))

(arg (eval-exp rand env)))
(dmatch proc

((closure ,x ,body ,env2)
(eval-exp body ‘((,x . ,arg) . ,env2))))))

((lambda (,x ) ,body)
(guard (symbol? x ) (not-in-env? ’lambda env))
‘(closure ,x ,body ,env))

(,x (guard (symbol? x )) (lookup x env)))))

(define not-in-env?
(lambda (x env)

(dmatch env
(() #t)
(((,y . ,v) . ,rest) (guard (eq? y x )) #f)
(((,y . ,v) . ,rest) (guard (not (eq? y x )))
(not-in-env? x rest)))))

The guard in eval-exp’s lambda clause includes the test

(not-in-env? ’lambda env)

When we extend the interpreter in section 4, and again in
appendix A, we will use a similar not-in-env? test in the
guard of every new language form and primitive operator.
This use of not-in-env? serves two critical and related pur-
poses. First, the test ensures that procedure application does
not overlap with any other clause in the interpreter, such
as the (quote ,v) and (list . ,a∗) clauses we add in section 4.

3 For this reason dmatch does not support else, since the always-
true implicit test of the else clause overlaps with the patterns and
guards of all other clauses.

4



Second, the test ensures that eval-exp will correctly evaluate
expressions in which lambda (or quote or list) is shadowed.
For example, the interpreter correctly handles shadowing of
lambda in this definition of Ω.

(define Ω
’((lambda (lambda) (lambda lambda))

(lambda (lambda) (lambda lambda))))

As expected, Ω diverges.

(eval-exp Ω ’()) ⇒ ⊥

The empty list passed as the second argument to eval-exp
represents the empty environment.

Here are two more examples showing eval-exp in action:

(eval-exp
’(((lambda (x)

(lambda (y) x))
(lambda (z) z))

(lambda (a) a))
’())

⇒
(closure z z ())

(eval-exp
’((lambda (x)

(lambda (y) x))
(lambda (z) z))

’())
⇒
(closure y x

((x . (closure z z ()))))

We now have a working λ-calculus interpreter in Scheme
that properly handles shadowing, and in which the dmatch
clauses can be reordered arbitrarily. Our next task is to
translate the interpreter directly into miniKanren. We start
again with environment lookup; a faithful translation of
lookup into lookup o might be:

(define lookup o

(lambda (x env t)
(conde

((≡ ’() env) fail)
((fresh (y v rest)

(≡ ‘((,y . ,v) . ,rest) env) (≡ y x )
(≡ v t)))

((fresh (y v rest)
(≡ ‘((,y . ,v) . ,rest) env) (6≡ y x )
(lookup o x rest t))))))

lookup o takes a third argument, t , which corresponds to
the value returned by the Scheme function lookup. That is,
t represents the term associated with variable x in environ-
ment env .

(run∗ (q) (lookup o ’y ’((x . foo) (y . bar)) q)) ⇒ (bar)

If x is not bound in env , a call to lookup o will reach the base
case and fail4, rather than signaling an error as in lookup.

(run∗ (q) (lookup o ’w ’((x . foo) (y . bar)) q)) ⇒ ()

Each conde clause in lookup o corresponds to a dmatch
clause in lookup. Instead of pattern matching against env ,
lookup o uses ≡ to unify terms with env . The goal (6≡ y x ) is
equivalent to the guard (not (eq? y x )) in lookup. As with
dmatch, the order of clauses does not affect the meaning of
a conde expression (but may affect its performance). Unlike
with dmatch, the order of expressions within a conde

4 fail can be defined as (define fail (≡ #f #t)).

clause is unimportant—there are no patterns or guards
within a conde clause, only goals that succeed or fail.5

We can simplify lookup o by removing the first conde

clause (which always fails), and by moving the unification
of env above the conde.

(define lookup o

(lambda (x env t)
(fresh (y v rest)

(≡ ‘((,y . ,v) . ,rest) env)
(conde

((≡ y x ) (≡ v t))
(( 6≡ y x ) (lookup o x rest t))))))

With lookup o defined, we can write eval-exp o, which
in turn relies on not-in-env o. Since there is no notion of a
guard in miniKanren, we must translate each dmatch guard
into one or more goal expressions; the Scheme predicate
(symbol? x ) becomes the type constraint (symbol o x ), while
(not-in-env? ’lambda env) becomes (not-in-env o ’lambda env).

(define eval-exp o

(lambda (exp env val)
(conde

((fresh (rator rand x body env2 a)
(≡ ‘(,rator ,rand) exp)
(eval-exp o rator env ‘(closure ,x ,body ,env2))
(eval-exp o rand env a)
(eval-exp o body ‘((,x . ,a) . ,env2) val)))

((fresh (x body)
(≡ ‘(lambda (,x ) ,body) exp)
(symbol o x )
(≡ ‘(closure ,x ,body ,env) val)
(not-in-env o ’lambda env)))

((symbol o exp) (lookup o exp env val)))))

not-in-env o differs from lookup o and eval-exp o in that
it does not take an additional argument with respect to
the Scheme function from which it was translated. This is
because not-in-env? is a predicate—the success or failure of
not-in-env o is equivalent to not-in-env? returning #t or #f,
respectively, so no “output” argument is needed.

(define not-in-env o

(lambda (x env)
(conde

((≡ ’() env))
((fresh (y v rest)

(≡ ‘((,y . ,v) . ,rest) env)
( 6≡ y x )
(not-in-env o x rest))))))

We can use eval-exp o to generate expression/value pairs.

(run5 (q)
(fresh (e v)

(eval-exp o e ’() v)
(≡ ‘(,e → ,v) q)))

This run5 expression generates five λ-expressions, and the
closures to which they evaluate.

5 Recall from section 2.1 that all goals within a conde clause must
succeed for the entire clause to succeed.

5



((((lambda ( 0) 1)
→ (closure 0 1 ()))

(sym 0))
((((lambda ( 0) 0) (lambda ( 1) 2))
→ (closure 1 2 ()))

(sym 0 1))
((((lambda ( 0) (lambda ( 1) 2)) (lambda ( 3) 4))
→ (closure 1 2 (( 0 . (closure 3 4 ())))))

( 6≡ (( 0 lambda)))
(sym 0 1 3))

((((lambda ( 0) ( 0 0)) (lambda ( 1) 1))
→ (closure 1 1 ()))

(sym 0 1))
((((lambda ( 0) ( 0 0))

(lambda ( 1) (lambda ( 2) 3)))
→ (closure 2 3 (( 1 . (closure 1 (lambda ( 2) 3) ())))))

( 6≡ (( 1 lambda)))
(sym 0 1 2)))

The 6≡ tags in the answers indicate disequality constraints
between variables and the values they cannot assume. The
constraints in the last answer state that 1 cannot be the
symbol lambda and that 0 , 1 , and 2 are symbols.

To demonstrate eval-exp o running backwards, here are
five Scheme expressions that evaluate to the closure from
the last eval-exp example:

(run5 (q)
(eval-exp o q ’() ’(closure y x ((x . (closure z z ()))))))

⇒
(((lambda (x) (lambda (y) x)) (lambda (z) z))
((lambda (x) (x (lambda (y) x))) (lambda (z) z))
(((lambda (x) (lambda (y) x))

((lambda ( 0) 0) (lambda (z) z)))
(sym 0))

((((lambda ( 0) 0) (lambda (x) (lambda (y) x)))
(lambda (z) z))

(sym 0))
(((lambda ( 0) 0)

((lambda (x) (lambda (y) x)) (lambda (z) z)))
(sym 0)))

The constraint (sym 0) states that the fresh variable reified
as 0 can only be associated with a symbol.

4. Extending the Interpreter

We have a relational interpreter, but we cannot yet generate
quines, or even evaluate quinec from section 1 when running
forward. We must add quote and list to the interpreter,
first to the Scheme version, then to miniKanren translation.

Adding quote to the Scheme interpreter is relatively
simple. Since quote means “do not evaluate the argument,”
we simply have to return the argument unmodified. Thus, we
can support quote by adding this clause to our interpreter:

((quote ,v) v)

In order to handle shadowing correctly, we must allow the
user to override the quote form. As with the lambda clause,
we do so by calling not-in-env? within a guard:

((quote ,v) (guard (not-in-env? ’quote env)) v)

Unfortunately, quote introduces a new problem: it is
possible for quoted data to conflict with our representation
of closures. For example, in the context of our interpreter,
these two expressions are equivalent:

((lambda (x) x) (lambda (y) y)))

and

((quote (closure x x ())) (lambda (y) y))

This is because (lambda (x) x) and (quote (closure x x ()))
both evaluate to (closure x x ()). We circumvent this issue by
declaring that the closure tag is a unique symbol that is not
part of the expression language (a gensym by convention).

We can now translate the quote clause to miniKanren. In
the Scheme version, we can assume that the user will not
write expressions containing the closure tag; alternatively,
we could use an actual gensym for the tag. However, we are
interested in running our relational interpreter backwards,
and miniKanren has no compunction against generating
expressions that include a symbol the user cannot or should
not type. We can solve this problem by adding an absent o

constraint with the symbol closure as the first argument,
ensuring the closure tag does not appear within v .

((fresh (v)
(≡ ‘(quote ,v) exp)
(not-in-env o ’quote env)
(absent o ’closure v)))

Like the lambda clause presented in section 3, the quote
clause uses not-in-env o to handle shadowing.

We now turn our attention to list . For the Scheme inter-
preter, list is simply a matter of mapping recursive calls to
eval-exp over the arguments:

((list . ,a∗) (guard (not-in-env? ’list env))
(map (lambda (e) (eval-exp e env)) a∗))

Similarly, we can add list to the miniKanren interpreter:

((fresh (a∗)
(≡ ‘(list . ,a∗) exp)
(not-in-env o ’list env)
(absent o ’closure a∗)
(proper-list o a∗ env val)))

Once again, we use the absent o constraint to prevent
miniKanren from generating list expressions that contain
closures. (Of course, a list expression containing λ expres-
sions will evaluate to a list containing closures, but the
expression being evaluated must not contain closures.)

As with the other tagged clauses, proper handling of
shadowing is ensured through use of not-in-env o. These
uses of not-in-env o also serve another purpose: without this
constraint, the expression (list x ) would be recognized both
as a procedure application (of whatever procedure might
be bound to the variable list), and as a use of the built-in
primitive list .

The list clause relies on proper-list o to ensure a∗ is a
proper list:

(define proper-list o

(lambda (exp env val)
(conde

((≡ ’() exp)
(≡ ’() val))

((fresh (a d v-a v-d)
(≡ ‘(,a . ,d) exp)
(≡ ‘(,v-a . ,v-d) val)
(eval-exp o a env v-a)
(proper-list o d env v-d))))))

6



Our final definition of eval-exp is

(define eval-exp
(lambda (exp env)

(dmatch exp
((quote ,v) (guard (not-in-env? ’quote env)) v)
((list . ,a∗) (guard (not-in-env? ’list env))
(map (lambda (e) (eval-exp e env)) a∗))

(,x (guard (symbol? x )) (lookup x env))
((,rator ,rand)
(guard (rator? rator env))
(let ((proc (eval-exp rator env))

(arg (eval-exp rand env)))
(dmatch proc

((closure ,x ,body ,env)
(eval-exp body ‘((,x . ,arg) . ,env))))))

((lambda (,x ) ,body)
(guard (symbol? x ) (not-in-env? ’lambda env))
‘(closure ,x ,body ,env)))))

(define rator?
(let ((op-names ’(lambda quote list)))

(lambda (x env)
(not (and (symbol? x )

(memq x op-names)
(not-in-env? x env))))))

The rator? predicate is used to ensure the procedure
application clause does not overlap with the lambda, list, or
quote clauses. An expression x is an operator, unless it one
of the symbols lambda, list, or quote, and it is not bound in
the environment. (If x is bound in env , it means the operator
is being shadowed, and that exp is a procedure application).

The definition of eval-exp in section 3 does not need to
use rator? because the three λ-calculus expressions have
different shapes: applications are represented by lists of
length two, abstractions are represented by lists of length
three, and variables are represented by symbols. Therefore
there is no overlap between clauses, which is required when
using dmatch.

Here is the extended relational interpreter.

(define eval-exp o

(lambda (exp env val)
(conde

((fresh (v)
(≡ ‘(quote ,v) exp)
(not-in-env o ’quote env)
(absent o ’closure v)
(≡ v val)))

((fresh (a∗)
(≡ ‘(list . ,a∗) exp)
(not-in-env o ’list env)
(absent o ’closure a∗)
(proper-list o a∗ env val)))

((symbol o exp) (lookup o exp env val))
((fresh (rator rand x body envˆ a)

(≡ ‘(,rator ,rand) exp)
(eval-exp o rator env ‘(closure ,x ,body ,envˆ))
(eval-exp o rand env a)
(eval-exp o body ‘((,x . ,a) . ,envˆ) val)))

((fresh (x body)
(≡ ‘(lambda (,x ) ,body) exp)
(symbol o x )
(not-in-env o ’lambda env)
(≡ ‘(closure ,x ,body ,env) val))))))

It is not necessary to test if a rator is valid, since the
application clause will fail if rator is a symbol not bound
in the environment. If exp is (quote (lambda (x) x)), for
example, and env contains a binding between quote and
a closure, then eval-exp o will treat the expression as a
procedure application, rather than a use of the quote form;
otherwise, if quote is not bound to a closure in env , the
application clause will fail.

5. Generating Quines

After much work, we are finally ready to put eval-exp o

through its paces, and generate a quine. The call to eval-
exp o is trivial—we want to find a Scheme expression q that,
when evaluated in the empty environment, returns itself.

(run1 (q) (eval-exp o q ’() q)) ⇒
((((lambda ( 0) (list 0 (list ’quote 0)))

’(lambda ( 0) (list 0 (list ’quote 0))))
( 6≡ (( 0 closure)) (( 0 list)) (( 0 quote)))
(sym 0)))

Sure enough, this is our old friend, quinec.
We can push things further by attempting to generate

twines, also known as “twin quines” or “double quines.”
That is, we want to find programs p and q such that (eval p)
⇒ q and (eval q) ⇒ p. According to this definition every
quine is trivially a twine, so we add the restriction that p
and q are not equal.

(run1 (x )
(fresh (p q)

( 6≡ p q)
(eval-exp o p ’() q) (eval-exp o q ’() p)
(≡ ‘(,p ,q) x )))

⇒
(((’((lambda ( 0)

(list ’quote (list 0 (list ’quote 0))))
’(lambda ( 0) (list ’quote (list 0 (list ’quote 0)))))
((lambda ( 0) (list ’quote (list 0 (list ’quote 0))))
’(lambda ( 0) (list ’quote (list 0 (list ’quote 0))))))

( 6≡ (( 0 closure)) (( 0 list)) (( 0 quote)))
(sym 0)))

Finally, we generate thrines: distinct programs p, q , and
r such that (eval p) ⇒ q , (eval q) ⇒ r , and (eval r) ⇒ p.

(run1 (x )
(fresh (p q r)

( 6≡ p q) (6≡ q r) (6≡ r p)
(eval-exp o p ’() q) (eval-exp o q ’() r) (eval-exp o r ’() p)
(≡ ‘(,p ,q ,r) x )))

⇒
(((”((lambda ( 0)

(list ’quote (list ’quote (list 0 (list ’quote 0)))))
’(lambda ( 0)

(list ’quote (list ’quote (list 0 (list ’quote 0))))))
’((lambda ( 0)

(list ’quote (list ’quote (list 0 (list ’quote 0)))))
’(lambda ( 0)

(list ’quote (list ’quote (list 0 (list ’quote 0))))))
((lambda ( 0)

(list ’quote (list ’quote (list 0 (list ’quote 0)))))
’(lambda ( 0)

(list ’quote (list ’quote (list 0 (list ’quote 0)))))))
( 6≡ (( 0 closure)) (( 0 list)) (( 0 quote)))
(sym 0)))

7



6. Conclusion

Quines have a long and interesting history: the term “quine”
was coined by Douglas Hofstadter (1979) in honor of the
logician Willard van Orman Quine, but the concept goes
back to Kleene’s recursion theorems (Rogers 1967).

In section 4 we describe how the absent o constraint
can be used to distinguish general procedure application
from uses of built-in primitives, and how this approach
correctly handles shadowing of primitives. However, there
are other ways to distinguish between application and uses
of primitives. Our first efforts involved tagging procedure
applications—that is, the Scheme expression (e1 e2) would
be written in the interpreted language as (app e1 e2). Al-
though this works, it is problematic in that generated pro-
grams are not quite Scheme programs. The tagging of appli-
cation is especially problematic in the presence of quote and
becomes most obvious when attempting to generate and in-
terpret quines. A special “unparser” could be used to remove
the app tags, making the answers readable. The tagless ap-
proach, however, allows the results of running the interpreter
backwards to be pasted directly into the Scheme REPL and
run without modification, while also allowing built-in forms
to be shadowed.

Acknowledgments

Stuart Halloway asked if an earlier version of our relational
interpreter could generate quines. His thirty-second question
inspired the work described in this paper and resulted in
significant improvements to miniKanren. We thank Stuart
for his question, and look forward to his next challenge.

Many students in the Indiana University pl-wonks group
joined us for an advanced programming languages course
the semester after Stuart asked his question; one of the
main topics of the course was running interpreters back-
wards. That group of students deserves our appreciation and
thanks both for their wisdom and enthusiasm. Among that
group was Claire Alvis, who was instrumental in implement-
ing our constraint system cKanren, which allowed everyone
in this course to build backward-running interpreters. She,
too, deserves much credit. We thank Jason Hemann, Aaron
Todd, and Cameron Swords for their involvement in devel-
oping software (some of which found its way into this paper)
and their generally helpful comments. Jason also helped Dan
with LATEX and revision control issues, and was instrumental
in improving appendix D.

None of this would have been possible without the incred-
ibly useful and timely observations of Mitchell Wand and
Steve Ganz. Oleg Kiselyov joined this effort early on and
he has been a constant rudder, keeping us grounded to the
mathematics of logic programming. Everything in miniKan-
ren has been influenced by the ideas of Oleg. Please accept
our thanks for all your help. Chung-chieh Shan offered to re-
vise our implementation of miniKanren, which first appeared
in the The Reasoned Schemer. Our later implementations,
including cKanren, αKanren, and this newer miniKanren,
have barely veered away from Chung-chieh’s masterful code.
We appreciate and thank him for this extraordinarily elegant
code. As always, we thank Dorai Sitaram for SLATEX. We
also thank Ramana Kumar and the anonymous reviewers
for their comments.

Working on a long-lived project, it is always difficult to
recall all those we want to thank, but hopefully between the
acknowledgments in our other papers and book we have not
missed anyone.

References

Claire E. Alvis, Jeremiah J. Willcock, Kyle M. Carter,
William E. Byrd, and Daniel P. Friedman. cKanren:
miniKanren with constraints. In Workshop on Scheme
and Functional Programming, October 2011.

Krzysztof R. Apt. Principles of Constraint Programming.
Cambridge University Press, 2003.

F. Baader and W. Snyder. Unification theory. In
A. Robinson and A. Voronkov, editors, Handbook of Au-
tomated Reasoning, volume I, chapter 8, pages 445–532.
Elsevier Science, 2001. URL citeseer.ist.psu.edu/
baader99unification.html.

Hendrik Pieter Barendregt. The Lambda Calculus – Its
Syntax and Semantics, volume 103 of Studies in Logic and
the Foundations of Mathematics. North-Holland, 1984.

Leo Broukhis, Simon Cooper, and Landon Curt Noll. The
International Obfuscated C Code Contest. http://www.
ioccc.org/.

William E. Byrd. Relational Programming in miniKanren:
Techniques, Applications, and Implementations. PhD the-
sis, Indiana University, 2009.

William E. Byrd and Daniel P. Friedman. From variadic
functions to variadic relations: A miniKanren perspective.
In Robby Findler, editor, Proceedings of the 2006 Scheme
and Functional Programming Workshop, University of
Chicago Technical Report TR-2006-06, pages 105–117,
2006.

William E. Byrd and Daniel P. Friedman. αKanren: A fresh
name in nominal logic programming. In Proceedings of the
2007 Workshop on Scheme and Functional Programming,
Universite Laval Technical Report DIUL-RT-0701, pages
79–90 (see also http://www.cs.indiana.edu/~webyrd
for improvements), 2007.

Edsger W. Dijkstra. Guarded commands, nondeterminacy
and formal derivation of programs. Commun. ACM, 18
(8):453–457, August 1975.

Daniel P. Friedman, William E. Byrd, and Oleg Kiselyov.
The Reasoned Schemer. The MIT Press, Cambridge, MA,
2005.

Ralf Hinze. Deriving backtracking monad transformers. In
Proceedings of the Fifth ACM SIGPLAN International
Conference on Functional Programming, ICFP ’00, Mon-
treal, Canada, September 18–21, 2000, pages 186–197.
ACM Press, 2000.

Douglas R. Hofstadter. Gödel, Escher, Bach : an eternal
golden braid. Basic, 1979.

Oleg Kiselyov, William E. Byrd, Daniel P. Friedman, and
Chung-chieh Shan. Pure, declarative, and construc-
tive arithmetic relations (declarative pearl). In Jacques
Garrigue and Manuel Hermenegildo, editors, Proceedings
of the 9th International Symposium on Functional and
Logic Programming, volume 4989 of LNCS, pages 64–80.
Springer, 2008.

David B. MacQueen, Philip Wadler, and Walid Taha. How
to add laziness to a strict language without even being
odd. In Proceedings of the 1998 ACM Workshop on ML,
pages 24–30, September 1998. Baltimore, MD.

Eugenio Moggi. Notions of computation and monads. In-
formation and Computation, 93(1):55–92, 1991.

Chris Okasaki. Purely functional data structures. Cambridge
University Press, 1999.

8



Hartley Rogers, Jr. Theory of recursive functions and effec-
tive computability. McGraw-Hill, New York, NY, 1967.

Gary P. Thompson II. The quine page (self-reproducing
code). http://www.nyx.org/~gthompso/quine.htm.

Philip Wadler. How to replace failure by a list of successes:
A method for exception handling, backtracking, and pat-
tern matching in lazy functional languages. In Jean-
Pierre Jouannaud, editor, Proceedings of the Second Con-
ference on Functional Programming Languages and Com-
puter Architecture, volume 201 of Lecture Notes in Com-
puter Science, pages 113–128, Nancy, France, Septem-
ber 16–19, 1985. Springer-Verlag.

Philip Wadler. The essence of functional programming. In
Conference Record of the Nineteenth ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, pages 1–14, Albuquerque, New Mexico, January,
1992. ACM Press.

A. An Extended Interpreter

Here we present a fully relational interpreter for an uncurried
Scheme with arithmetic operators, conditionals, and pairs;
this interpreter generates quines more slowly than the one
in section 5, due to the higher branching factor.

Instead of using Scheme numbers, eval-exp o uses the
relational arithmetic system described in appendix B.

(define eval-exp o

(lambda (exp env val)
(conde

((fresh (v)
(≡ ‘(quote ,v) exp)
(not-in-env o ’quote env)
(absent o ’closure v)
(absent o ’int-val v)
(≡ v val)))

((fresh (a∗)
(≡ ‘(list . ,a∗) exp)
(not-in-env o ’list env)
(absent o ’closure a∗)
(absent o ’int-val a∗)
(proper-list o a∗ env val)))

((prim-exp o exp env val))
((symbol o exp) (lookup o exp env val))
((fresh (rator x∗ rands body env2 a∗ res)

(≡ ‘(,rator . ,rands) exp)
(eval-exp o rator env ‘(closure ,x∗ ,body ,env2))
(proper-list o rands env a∗)
(ext-env ∗o x∗ a∗ env2 res)
(eval-exp o body res val)))

((fresh (x∗ body)
(≡ ‘(lambda ,x∗ ,body) exp)
(not-in-env o ’lambda env)
(≡ ‘(closure ,x∗ ,body ,env) val))))))

(define ext-env ∗o

(lambda (x∗ a∗ env out)
(conde

((≡ ’() x∗) (≡ ’() a∗) (≡ env out))
((fresh (x a dx∗ da∗ env2)

(≡ ‘(,x . ,dx∗) x∗)
(≡ ‘(,a . ,da∗) a∗)
(≡ ‘((,x . ,a) . ,env) env2)
(ext-env ∗o dx∗ da∗ env2 out))))))

Primitive expressions include boolean literals, numbers
(represented as tagged little-endian lists of bits), pairs, and
operations over these values. The goal prim-exp o dispatches

to other goals to handle these primitives. The goals to handle
sub1 , zero? , ∗, cons, car , cdr , not , and if, rely on one or
more mutually-recursive calls to eval-exp o.

(define prim-exp o

(lambda (exp env val)
(conde

((boolean-prim o exp env val))
((number-prim o exp env val))
((sub1-prim o exp env val))
((zero?-prim o exp env val))
((*-prim o exp env val))
((cons-prim o exp env val))
((car-prim o exp env val))
((cdr-prim o exp env val))
((not-prim o exp env val))
((if-prim o exp env val)))))

(define boolean-prim o

(lambda (exp env val)
(conde

((≡ #t exp) (≡ #t val))
((≡ #f exp) (≡ #f val)))))

(define number-prim o

(lambda (exp env val)
(fresh (n)

(≡ ‘(int-exp ,n) exp)
(≡ ‘(int-val ,n) val)
(not-in-env o ’int-exp env))))

(define sub1-prim o

(lambda (exp env val)
(fresh (e n n-1 )

(≡ ‘(sub1 ,e) exp)
(≡ ‘(int-val ,n-1 ) val)
(not-in-env o ’sub1 env)
(eval-exp o e env ‘(int-val ,n))
(−o n ’(1) n-1 ))))

(define zero?-prim o

(lambda (exp env val)
(fresh (e n)

(≡ ‘(zero? ,e) exp)
(conde

((zero o n) (≡ #t val))
((pos o n) (≡ #f val)))

(not-in-env o ’zero? env)
(eval-exp o e env ‘(int-val ,n)))))

(define *-prim o

(lambda (exp env val)
(fresh (e1 e2 n1 n2 n3)

(≡ ‘(∗ ,e1 ,e2) exp)
(≡ ‘(int-val ,n3) val)
(not-in-env o ’∗ env)
(eval-exp o e1 env ‘(int-val ,n1))
(eval-exp o e2 env ‘(int-val ,n2))
(∗o n1 n2 n3))))

(define cons-prim o

(lambda (exp env val)
(fresh (a d v-a v-d)

(≡ ‘(cons ,a ,d) exp)
(≡ ‘(,v-a . ,v-d) val)
(absent o ’closure val)
(absent o ’int-val val)
(not-in-env o ’cons env)
(eval-exp o a env v-a)
(eval-exp o d env v-d))))

9



(define car-prim o

(lambda (exp env val)
(fresh (p d)

(≡ ‘(car ,p) exp)
(6≡ ’int-val val)
(6≡ ’closure val)
(not-in-env o ’car env)
(eval-exp o p env ‘(,val . ,d)))))

(define cdr-prim o

(lambda (exp env val)
(fresh (p a)

(≡ ‘(cdr ,p) exp)
(6≡ ’int-val a)
(6≡ ’closure a)
(not-in-env o ’cdr env)
(eval-exp o p env ‘(,a . ,val)))))

(define not-prim o

(lambda (exp env val)
(fresh (e b)

(≡ ‘(not ,e) exp)
(conde

((≡ #t b) (≡ #f val))
((≡ #f b) (≡ #t val)))

(not-in-env o ’not env)
(eval-exp o e env b))))

(define if-prim o

(lambda (exp env val)
(fresh (e1 e2 e3 t)

(≡ ‘(if ,e1 ,e2 ,e3) exp)
(not-in-env o ’if env)
(eval-exp o e1 env t)
(conde

((≡ #t t) (eval-exp o e2 env val))
((≡ #f t) (eval-exp o e3 env val))))))

Now we can consider several examples using eval-exp o.
Consider this run expression, which returns 12 expressions
that evaluate to six in the empty environment.

(run12 (q) (eval-exp o q ’() ‘(int-val ,(build-num 6))))
⇒
((int-exp (0 1 1))
((lambda () (int-exp (0 1 1))))
(sub1 (int-exp (1 1 1)))
(((lambda ( 0) (int-exp (0 1 1))) ’ 1)
( 6≡ (( 0 int-exp)))
(absent closure 1)
(absent int-val 1))

(∗ (int-exp (1)) (int-exp (0 1 1)))
(∗ (int-exp (0 1 1)) (int-exp (1)))
(∗ (int-exp (0 1)) (int-exp (1 1)))
(((lambda ( 0) (int-exp (0 1 1))) (list))
( 6≡ (( 0 int-exp))))

(car (list (int-exp (0 1 1))))
((lambda () ((lambda () (int-exp (0 1 1))))))
(sub1 ((lambda () (int-exp (1 1 1)))))
((lambda () (sub1 (int-exp (1 1 1))))))

The 7th value in this list is

(∗ (int-exp (0 1)) (int-exp (1 1)))

And, if we look at the first 500 answers,

(run500 (q) (eval-exp o q ’() ‘(int-val ,(build-num 6))))

we discover

(sub1 (sub1 (sub1 (int-exp (1 0 0 1)))))

is the 270th value.
Next, we calculate the factorial of five, using “The Poor-

man’s Y Combinator.”

(define rel-fact5
‘((lambda (f)

((f f) (int-exp ,(build-num 5))))
(lambda (f)

(lambda (n)
(if (zero? n)

(int-exp ,(build-num 1))
(∗ n ((f f) (sub1 n))))))))

(run∗ (q) (eval-exp o rel-fact5 ’() q))
⇒ ((int-val (0 0 0 1 1 1 1)))

Now that we know our interpreter works, we are ready
to generate quines in our extended language:

(run5 (q) (eval-exp o q ’() q))
⇒
(#t
#f
(((lambda ( 0) (list 0 (list ’quote 0)))

’(lambda ( 0) (list 0 (list ’quote 0))))
( 6≡ (( 0 closure))

(( 0 int-val))
(( 0 list))
(( 0 quote)))

(sym 0))
(((lambda ( 0) (list 0 (list (car ’(quote . 1)) 0)))

’(lambda ( 0) (list 0 (list (car ’(quote . 1)) 0))))
( 6≡ (( 0 car))

(( 0 closure))
(( 0 int-val))
(( 0 list))
(( 0 quote)))

(absent closure 1)
(absent int-val 1)
(sym 0))

(((lambda ( 0) (list (list ’lambda ’( 0) 0) (list ’quote 0)))
’(list (list ’lambda ’( 0) 0) (list ’quote 0)))

( 6≡ (( 0 closure))
(( 0 int-val))
(( 0 list))
(( 0 quote)))

(sym 0)))

Not surprisingly, booleans are quines, since they are self-
evaluating literals. The other answers are more interesting—
we encourage the reader to look for patterns in the answers.

B. A Relational Arithmetic System

To make the paper self-contained, we present the relational
arithmetic system used in the extended interpreter of ap-
pendix A. Variants of this arithmetic system have been de-
scribed in Kiselyov et al. (2008) (with termination proofs for
the individual operators), Byrd (2009), and Friedman et al.
(2005)—please see these references for a detailed description
of the code.

A note on typography: +o is entered as pluso, −o as
minuso, ∗o as *o, and ÷o as /o.

B.1 Relational Arithmetic

Relational arithmetic allows for queries such as ‘what are five
triples of natural numbers x, y, and z for which x+ y = z?’,
and ‘for which natural numbers x and y does x · y = 24
hold?’, which can be expressed in miniKanren as

10



(run5 (q)
(fresh (x y z )

(+o x y z )
(≡ ‘(,x ,y ,z ) q)))

and

(run∗ (q)
(fresh (x y)

(∗o x y (build-num 24))
(≡ ‘(,x ,y ,(build-num 24)) q)))

respectively.
In order to understand the answers to these runs, it

is necessary to know how we represent numbers. Ground
numbers are represented in “little endian” style using lists
of bits. The most significant bit in the list cannot be 0; this
restriction ensures each number has a unique representation.
Zero is therefore represented by the empty list rather than
(0), to avoid violating this restriction. The number one is
represented by (1), the number two by (0 1), etc.

A number need not be ground, so long as it is not
instantiated to a list ending with 0. For example, ‘(1 . ,x )
represents any odd natural number, while ‘(0 . ,x ) represents
any positive even number (with the restriction that x must
represent a positive integer, which we shall assume in the
rest of this description). The list (0 0 0 1) represents the
number 8, while ‘(0 0 0 . ,x ) represents multiples of 8. If x
is (1), the multiple is just 8. If x is (0 1), the multiple of 8 is
16, and so forth. Numbers can be even more sophisticated:
‘(0 ,y 0 . ,x ) represents multiples of 8 if y is 0, and numbers
of the form 8x+ 2 if y is 1.

Here are the answers to the run5 expression above. The
first answer states that for x ≥ 0, x + 0 = x; the second
answer states that for x > 0, 0 + x = x; the third answer
states that 1+1 = 2; the fourth answer states that for x > 0
and y ≤ 1, 1 + (4x + y) = 4x + y + 1; and the fifth answer
states that 1 + 3 = 4.

(( 0 () 0)
(() ( 0 . 1) ( 0 . 1))
((1) (1) (0 1))
((1) (0 0 . 1) (1 0 . 1))
((1) (1 1) (0 0 1)))

And here are the answers to the run∗ expression above.
There are eight answers, each one producing a different way
to multiply two numbers to yield 24. For example, the fifth
answer states that 8 times 3 is 24.

(((1) (0 0 0 1 1) (0 0 0 1 1))
((0 0 0 1 1) (1) (0 0 0 1 1))
((0 1) (0 0 1 1) (0 0 0 1 1))
((0 0 1) (0 1 1) (0 0 0 1 1))
((0 0 0 1) (1 1) (0 0 0 1 1))
((1 1) (0 0 0 1) (0 0 0 1 1))
((0 1 1) (0 0 1) (0 0 0 1 1))
((0 0 1 1) (0 1) (0 0 0 1 1)))

Our system includes other relational arithmetic opera-
tors: subtraction (−o), integer division with remainder (÷o),
integer logarithm with remainder (logo), and exponentiation
(expo, which is derived from logo).

B.2 Core Arithmetic Operators

This subsection contains arithmetic operators used in the
extended interpreter in appendix A.

(define build-num
(lambda (n)

(cond
((odd? n)
(cons 1

(build-num (÷ (− n 1) 2))))
((and (not (zero? n)) (even? n))
(cons 0

(build-num (÷ n 2))))
((zero? n) ’()))))

(define zero o

(lambda (n)
(≡ ’() n)))

(define pos o

(lambda (n)
(fresh (a d)

(≡ ‘(,a . ,d) n))))

(define >1o

(lambda (n)
(fresh (a ad dd)

(≡ ‘(,a ,ad . ,dd) n))))

(define full-adder o

(lambda (b x y r c)
(conde

((≡ 0 b) (≡ 0 x ) (≡ 0 y) (≡ 0 r) (≡ 0 c))
((≡ 1 b) (≡ 0 x ) (≡ 0 y) (≡ 1 r) (≡ 0 c))
((≡ 0 b) (≡ 1 x ) (≡ 0 y) (≡ 1 r) (≡ 0 c))
((≡ 1 b) (≡ 1 x ) (≡ 0 y) (≡ 0 r) (≡ 1 c))
((≡ 0 b) (≡ 0 x ) (≡ 1 y) (≡ 1 r) (≡ 0 c))
((≡ 1 b) (≡ 0 x ) (≡ 1 y) (≡ 0 r) (≡ 1 c))
((≡ 0 b) (≡ 1 x ) (≡ 1 y) (≡ 0 r) (≡ 1 c))
((≡ 1 b) (≡ 1 x ) (≡ 1 y) (≡ 1 r) (≡ 1 c)))))

(define adder o

(lambda (d n m r)
(conde

((≡ 0 d) (≡ ’() m) (≡ n r))
((≡ 0 d) (≡ ’() n) (≡ m r)
(pos o m))

((≡ 1 d) (≡ ’() m)
(adder o 0 n ’(1) r))

((≡ 1 d) (≡ ’() n) (pos o m)
(adder o 0 ’(1) m r))

((≡ ’(1) n) (≡ ’(1) m)
(fresh (a c)

(≡ ‘(,a ,c) r)
(full-adder o d 1 1 a c)))

((≡ ’(1) n) (gen-adder o d n m r))
((≡ ’(1) m) (>1o n) (>1o r)
(adder o d ’(1) n r))

((>1o n) (gen-adder o d n m r)))))

(define gen-adder o

(lambda (d n m r)
(fresh (a b c e x y z )

(≡ ‘(,a . ,x ) n)
(≡ ‘(,b . ,y) m) (pos o y)
(≡ ‘(,c . ,z ) r) (pos o z )
(full-adder o d a b c e)
(adder o e x y z ))))

(define +o (lambda (n m k) (adder o 0 n m k)))

(define −o (lambda (n m k) (+o m k n)))

11



(define ∗o
(lambda (n m p)

(conde

((≡ ’() n) (≡ ’() p))
((pos o n) (≡ ’() m) (≡ ’() p))
((≡ ’(1) n) (pos o m) (≡ m p))
((>1o n) (≡ ’(1) m) (≡ n p))
((fresh (x z )

(≡ ‘(0 . ,x ) n) (pos o x )
(≡ ‘(0 . ,z ) p) (pos o z )
(>1o m)
(∗o x m z )))

((fresh (x y)
(≡ ‘(1 . ,x ) n) (pos o x )
(≡ ‘(0 . ,y) m) (pos o y)
(∗o m n p)))

((fresh (x y)
(≡ ‘(1 . ,x ) n) (pos o x )
(≡ ‘(1 . ,y) m) (pos o y)
(odd-∗o x n m p))))))

(define odd-∗o
(lambda (x n m p)

(fresh (q)
(bound-∗o q p n m)
(∗o x m q)
(+o ‘(0 . ,q) m p))))

(define bound-∗o
(lambda (q p n m)

(conde

((≡ ’() q) (pos o p))
((fresh (a0 a1 a2 a3 x y z )

(≡ ‘(,a0 . ,x ) q)
(≡ ‘(,a1 . ,y) p)
(conde

((≡ ’() n) (≡ ‘(,a2 . ,z ) m)
(bound-∗o x y z ’()))

((≡ ‘(,a3 . ,z ) n) (bound-∗o x y z m))))))))

B.3 Additional Arithmetic Operators

This subsection contains useful arithmetic operators, beyond
those used in the extended interpreter in appendix A.

(define =l o

(lambda (n m)
(conde

((≡ ’() n) (≡ ’() m))
((≡ ’(1) n) (≡ ’(1) m))
((fresh (a x b y)

(≡ ‘(,a . ,x ) n) (pos o x )
(≡ ‘(,b . ,y) m) (pos o y)
(=l o x y))))))

(define <l o

(lambda (n m)
(conde

((≡ ’() n) (pos o m))
((≡ ’(1) n) (>1o m))
((fresh (a x b y)

(≡ ‘(,a . ,x ) n) (pos o x )
(≡ ‘(,b . ,y) m) (pos o y)
(<l o x y))))))

(define 6l o

(lambda (n m)
(conde

((=l o n m))
((<l o n m)))))

(define <o

(lambda (n m)
(conde

((<l o n m))
((=l o n m)
(fresh (x )

(pos o x )
(+o n x m))))))

(define 6o

(lambda (n m)
(conde

((≡ n m))
((<o n m)))))

(define ÷o

(lambda (n m q r)
(conde

((≡ r n) (≡ ’() q) (<o n m))
((≡ ’(1) q) (=l o n m) (+o r m n) (<o r m))
((<l o m n) (<o r m) (pos o q)
(fresh (nh nl qh ql qlm qlmr rr rh)

(split o n r nl nh)
(split o q r ql qh)
(conde

((≡ ’() nh) (≡ ’() qh)
(−o nl r qlm)
(∗o ql m qlm))

((pos o nh)
(∗o ql m qlm)
(+o qlm r qlmr)
(−o qlmr nl rr)
(split o rr r ’() rh)
(÷o nh m qh rh))))))))

(define split o

(lambda (n r l h)
(conde

((≡ ’() n) (≡ ’() h) (≡ ’() l))
((fresh (b n̂)

(≡ ‘(0 ,b . ,n̂) n)
(≡ ’() r)
(≡ ‘(,b . ,n̂) h)
(≡ ’() l)))

((fresh (n̂)
(≡ ‘(1 . ,n̂) n)
(≡ ’() r)
(≡ n̂ h)
(≡ ’(1) l)))

((fresh (b n̂ a r̂)
(≡ ‘(0 ,b . ,n̂) n)
(≡ ‘(,a . ,r̂) r)
(≡ ’() l)
(split o ‘(,b . ,n̂) r̂ ’() h)))

((fresh (n̂ a r̂)
(≡ ‘(1 . ,n̂) n)
(≡ ‘(,a . ,r̂) r)
(≡ ’(1) l)
(split o n̂ r̂ ’() h)))

((fresh (b n̂ a r̂ l̂)
(≡ ‘(,b . ,n̂) n)
(≡ ‘(,a . ,r̂) r)

(≡ ‘(,b . ,l̂) l)

(pos o l̂)

(split o n̂ r̂ l̂ h))))))

12



(define logo

(lambda (n b q r)
(conde

((≡ ’(1) n) (pos o b) (≡ ’() q) (≡ ’() r))
((≡ ’() q) (<o n b) (+o r ’(1) n))
((≡ ’(1) q) (>1o b) (=l o n b) (+o r b n))
((≡ ’(1) b) (pos o q) (+o r ’(1) n))
((≡ ’() b) (pos o q) (≡ r n))
((≡ ’(0 1) b)
(fresh (a ad dd)

(pos o dd)
(≡ ‘(,a ,ad . ,dd) n)
(exp2 o n ’() q)
(fresh (s)

(split o n dd r s))))
((fresh (a ad add ddd)

(conde

((≡ ’(1 1) b))
((≡ ‘(,a ,ad ,add . ,ddd) b))))

(<l o b n)
(fresh (bw1 bw nw nw1 ql1 ql s)

(exp2 o b ’() bw1 )
(+o bw1 ’(1) bw)
(<l o q n)
(fresh (q1 bwq1 )

(+o q ’(1) q1)
(∗o bw q1 bwq1 )
(<o nw1 bwq1 ))

(exp2 o n ’() nw1 )
(+o nw1 ’(1) nw)
(÷o nw bw ql1 s)
(+o ql ’(1) ql1 )
(6l o ql q)
(fresh (bql qh s qdh qd)

(repeated-mul o b ql bql)
(÷o nw bw1 qh s)
(+o ql qdh qh)
(+o ql qd q)
(6o qd qdh)
(fresh (bqd bq1 bq)

(repeated-mul o b qd bqd)
(∗o bql bqd bq)
(∗o b bq bq1 )
(+o bq r n)
(<o n bq1 ))))))))

(define exp2 o

(lambda (n b q)
(conde

((≡ ’(1) n) (≡ ’() q))
((>1o n) (≡ ’(1) q)
(fresh (s)

(split o n b s ’(1))))
((fresh (q1 b2)

(≡ ‘(0 . ,q1) q)
(pos o q1)
(<l o b n)
(append o b ‘(1 . ,b) b2)
(exp2 o n b2 q1)))

((fresh (q1 nh b2 s)
(≡ ‘(1 . ,q1) q)
(pos o q1)
(pos o nh)
(split o n b s nh)
(append o b ‘(1 . ,b) b2)
(exp2 o nh b2 q1))))))

(define repeated-mul o

(lambda (n q nq)
(conde

((pos o n) (≡ ’() q) (≡ ’(1) nq))
((≡ ’(1) q) (≡ n nq))
((>1o q)
(fresh (q1 nq1 )

(+o q1 ’(1) q)
(repeated-mul o n q1 nq1 )
(∗o nq1 n nq))))))

(define expo

(lambda (b q n)
(logo n b q ’())))

C. Generalized Pattern Matcher

This appendix describes and defines the dmatch pat-
tern matcher, which is a generalization of Oleg Kiselyov’s
pmatch that appeared in Byrd and Friedman (2007).
dmatch improves error reporting, since now it is possible to
associate a string with each use of pattern matching, as with
the name "example" in the definition of h below. dmatch
does not handle quote specially, which allows for certain
common patterns to be specified that were previously not
possible. Finally, dmatch does not support the else aux-
iliary keyword, and the order of the clauses is arbitrary—
however, only one pattern (plus guard) can succeed for each
invocation of dmatch. Here is an example of dmatch.

(define h
(lambda (x y)

(dmatch ‘(,x . ,y) "example"
((,a . ,b)
(guard (number? a) (number? b))
(∗ a b))

((,a ,b ,c)
(guard (number? a) (number? b) (number? c))
(+ a b c)))))

(list (h 3 4) (apply h ‘(1 (3 4)))) ⇒ (12 8)

In this example, a dotted pair is matched against two dif-
ferent patterns. In the first clause, the value of x is lexi-
cally bound to a and the value of y is lexically bound to
b. Before the pattern match succeeds, however, an optional
side-effect-free guard is run within the scope of a and b. The
guard succeeds only if a and b are bound to numbers; if so,
then their product is returned. The second clause attempts
to match the dotted pair against a three-element list, once
again with an optional guard. If the values bound to a, b,
and c are all numbers, the second clause returns their sum.

Here is the grammar for dmatch, where exp is any
pure Scheme expression, boolean-exp is any pure Scheme
predicate expression, var is any valid Scheme identifier,
literal is any Scheme literal, and name-string is any literal
Scheme string:

match := (dmatch exp {name-string} clause . . .)
clause := (pattern {guard} exp . . .)

guard := (guard boolean-exp . . .)

pattern := , var

| literal
| (pattern1 pattern2 . . .)

| (pattern1 . pattern2)

13



Now we examine the implementation of dmatch. The main
dmatch macro simply handles the optional name string,
and passes off control to the auxiliary helpers. The auxiliary
macros will produce a list of “packages,” which is then
processed by the run-a-thunk procedure.

(define-syntax dmatch
(syntax-rules ()

(( v (e . . . ) . . . )
(let ((pkg∗ (dmatch-remexp v (e . . . ) . . . )))

(run-a-thunk ’v v #f pkg∗)))
(( v name (e . . . ) . . . )
(let ((pkg∗ (dmatch-remexp v (e . . . ) . . . )))

(run-a-thunk ’v v ’name pkg∗)))))
A package comprises a clause and a thunk, and is con-
structed/destructed using these functions:

(define pkg (lambda (cls thk) (cons cls thk)))
(define pkg-clause (lambda (pkg) (car pkg)))
(define pkg-thunk (lambda (pkg) (cdr pkg)))

dmatch-remexp ensures that the input expression to
dmatch is evaluated only once.

(define-syntax dmatch-remexp
(syntax-rules ()

(( (rator rand . . . ) cls . . . )
(let ((v (rator rand . . . )))

(dmatch-aux v cls . . . )))
(( v cls . . . ) (dmatch-aux v cls . . . ))))

Each expansion of dmatch-aux creates a package list of
some type. There are three cases: two recursive cases and a
single base case. If a pattern without a guard matches the
input, that clause and its thunk are added to the package
list. If a matching pattern has a guard, the clause and thunk
are added to the package list only if the guard also succeeds.

(define-syntax dmatch-aux
(syntax-rules (guard)

(( v) ’())
(( v (pat (guard g . . . ) e0 e . . . ) cs . . . )
(let ((fk (lambda () (dmatch-aux v cs . . . ))))

(ppat v pat
(if (not (and g . . . ))

(fk)
(cons (pkg ’(pat (guard g . . . ) e0 e . . . )

(lambda () e0 e . . . ))
(fk)))

(fk))))
(( v (pat e0 e . . . ) cs . . . )
(let ((fk (lambda () (dmatch-aux v cs . . . ))))

(ppat v pat
(cons (pkg ’(pat e0 e . . . )

(lambda () e0 e . . . ))
(fk))

(fk))))))

The ppat helper macro does the actual pattern matching,
then expands into one of two forms. The consequent ex-
pression is the result of the expansion of ppat if the pattern
matches, and the alternate expression otherwise. In all cases,
the alternate is just another dmatch-aux macro that drops
the first pattern and continues the recursive expansion. The
alternative is encoded as a thunk, to avoid expanding the
same expression multiple times.

ppat leverages the syntax-rules pattern matcher to do
most of the work. The pair case performs tree recursion to
match against the car and cdr . The last clause uses equal?
rather than eq? in order to handle vectors and other data.

(define-syntax ppat
(syntax-rules (unquote)

(( v (unquote var) kt kf ) (let ((var v)) kt))
(( v (x . y) kt kf )
(if (pair? v)

(let ((vx (car v)) (vy (cdr v)))
(ppat vx x (ppat vy y kt kf ) kf ))

kf ))
(( v lit kt kf ) (if (equal? v (quote lit)) kt kf ))))

If there is no match, the error is reported by no-matching-
pattern (using the non-standard printf function). If there
is an overlap between two or more patterns/guards, then
overlapping-patterns/guards signals an error. Otherwise, if
there is no overlap, the thunk in the singleton package list
is invoked.

(define run-a-thunk
(lambda (v-expr v name pkg∗)

(cond
((null? pkg∗) (no-matching-pattern name v-expr v))
((null? (cdr pkg∗)) ((pkg-thunk (car pkg∗))))
(else
(ambiguous-pattern/guard name v-expr v pkg∗)))))

(define no-matching-pattern
(lambda (name v-expr v)

(if name
(printf "dmatch ˜d failed˜n˜d ˜d˜n"

name v-expr v)
(printf "dmatch failed˜n˜d ˜d˜n"

v-expr v))
(error ’dmatch "match failed")))

(define overlapping-patterns/guards
(lambda (name v-expr v pkg∗)

(if name
(printf "dmatch ˜d overlapping matching clauses˜n"

name)
(printf "dmatch overlapping matching clauses˜n"))

(printf "with ˜d evaluating to ˜d˜n" v-expr v)
(printf " ˜n")
(for-each pretty-print (map pkg-clause pkg∗))))

Here is the definition of h (eliding the second clause) after
macro expansion.

(lambda (x y)
(let ((pkg∗

(let ((v (cons x y)))
(let ((fk (lambda () . . .)))

(if (pair? v)
(let ((vx (car v)) (vy (cdr v)))

(let ((a vx ))
(let ((b vy))

(if (not (if (number? a) (number? b) #f))
(fk)
(cons

(pkg
’((,a . ,b)

(guard
(number? a)
(number? b))

(∗ a b))
(lambda () (∗ a b)))

(fk))))))
(fk))))))

(run-a-thunk ’‘(,x . ,y) (cons x y) "example" pkg∗)))

14



There are two kinds of improvements that should be resolved
by the compiler. First, vx and vy are not needed, so they
should not get bindings. The lexical variables a and b could
have replaced vx and vy , respectively. Second, a and b
should be parallel let bindings.

D. miniKanren Implementation

Our miniKanren implementation comprises two kinds of
operators: the interface operators run and run∗; and goal
constructors ≡, 6≡, symbol o, number o, absent o, conde, and
fresh, which take a package implicitly.

A package is a list of four values, each of which is, or
contains, an association list of variables to values. The first
value in a package is a substitution, S . The second value in
a package is a list of association lists, D ; each association
list, d , represents a disequality constraint. The third value in
a package is an association list, A, that associates a variable
with a pair consisting of a tag and a predicate. If a variable,
say x , is associated with the tag sym, then we know that
x may only be associated in the substitution with either a
fresh variable or a symbol. Any attempt to associate x with
any other kind of value leads to failure. A has within it
constraints that are used to support symbol o and number o.
The final value in a package is also an association list, T ,
whose members associate a variable with a pair consisting
of a tag and a predicate. T has within it constraints that
are used to support absent o.

(define c�S (lambda (c) (car c)))
(define c�D (lambda (c) (cadr c)))
(define c�A (lambda (c) (caddr c)))
(define c�T (lambda (c) (cadddr c)))
(define empty-c ’(() () () ()))

A goal g is a function that maps a package c to an ordered
sequence c∞ of zero or more packages. (For clarity, we notate
lambda as λG when creating such a function g .)

(define-syntax λG

(syntax-rules (:)
(( (c) e) (lambda (c) e))
(( (c : S D A T ) e)
(lambda (c)

(let ((S (c�S c))
(D (c�D c))
(A (c�A c))
(T (c�T c)))

e)))))

Because a sequence of packages may be infinite, we rep-
resent it not as a list but as a c∞ , a special kind of stream
that can contain either precisely zero, precisely one, or one
or more packages (Hinze 2000; Wadler 1985). mzero, and
unit, represent these first two options. We use #f to denote
the empty stream of packages. If c is a package, then c itself
represents the stream containing just c.

(define mzero (lambda () #f))
(define unit (λG (c) c))
(define choice (lambda (c f ) (cons c f )))

To represent a stream containing multiple packages, we
use (choice c f ), where c is the first package in the stream,
and where f is a thunk that, when invoked, produces the
remainder of the stream. (For clarity, we notate lambda
as λF when creating such a function f .) To represent an
incomplete stream, we use (inc e), where e is an expression
that evaluates to a c∞—thus inc creates an f .

(define-syntax λF

(syntax-rules () (( () e) (lambda () e))))

(define-syntax inc
(syntax-rules () (( e) (λF () e))))

(define empty-f (λF () (mzero)))

A singleton stream c is the same as (choice c empty-f ). For
goals that return only a single package, however, using this
special representation of a singleton stream avoids the cost of
unnecessarily building and taking apart pairs, and creating
and invoking thunks.

To ensure that the values produced by these four kinds
of c∞ ’s can be distinguished, we assume that a package is
never #f, a function, or a pair whose cdr is a function. To
discriminate among these four cases, we define case∞ .

(define-syntax case∞

(syntax-rules ()

(( e (() e0) ((f̂) e1) ((ĉ) e2) ((c f ) e3))
(let ((c∞ e))

(cond
((not c∞) e0)

((procedure? c∞) (let ((f̂ c∞)) e1))
((not (and (pair? c∞)

(procedure? (cdr c∞))))
(let ((ĉ c∞)) e2))

(else (let ((c (car c∞)) (f (cdr c∞)))
e3)))))))

To get answers from the potentially infinite stream, we
use the run interface. The interface operator run uses take
to convert an f to an even stream (MacQueen et al. 1998).
The definition of run places an artificial goal at the tail
of g0 g . . . This artificial goal invokes reify (section 2.1) on
the variable x using the final package final-c produced by
running all the goals in the empty package empty-c.

(define-syntax run
(syntax-rules ()

(( n (x ) g0 g . . . )
(take n

(λF ()
((fresh (x ) g0 g . . .

(λG (final-c)
(let ((z ((reify x ) final-c)))

(choice z empty-f ))))
empty-c))))))

(define-syntax run∗

(syntax-rules ()
(( (x ) g . . . ) (run #f (x ) g . . . ))))

If the first argument to take is #f, then take returns the
entire stream of reified values as a list, thereby providing the
behavior of run∗. The and expressions within take detect
this #f case.

(define take
(lambda (n f )

(cond
((and n (zero? n)) ’())
(else
(case∞ (f )

(() ’())
((f ) (take n f ))
((c) (cons c ’()))
((c f ) (cons c (take (and n (− n 1)) f ))))))))

15



D.1 Goal Constructors

To take the conjunction of goals, we define fresh, a goal
constructor that first lexically binds variables built by var
and then combines successive goals using bind∗.

(define-syntax fresh
(syntax-rules ()

(( (x . . . ) g0 g . . . )
(λG (c)

(inc (let ((x (var ’x)) . . . )
(bind∗ (g0 c) g . . . )))))))

bind∗ is short-circuiting, since the empty stream is rep-
resented by #f. bind∗ relies on bind (Moggi 1991; Wadler
1992), which applies the goal g to each element in the stream
c∞ . The resulting c∞ ’s are then merged using mplus, which
combines a c∞ and an f to yield a single c∞ .

(define-syntax bind∗

(syntax-rules ()
(( e) e)
(( e g0 g . . . ) (bind∗ (bind e g0) g . . . ))))

(define bind
(lambda (c∞ g)

(case∞ c∞

(() (mzero))
((f ) (inc (bind (f ) g)))
((c) (g c))
((c f ) (mplus (g c) (λF () (bind (f ) g)))))))

(define mplus
(lambda (c∞ f )

(case∞ c∞

(() (f ))

((f̂) (inc (mplus (f ) f̂)))
((c) (choice c f ))

((c f̂) (choice c (λF () (mplus (f ) f̂)))))))

To take the disjunction of goals we define conde, a
goal constructor that combines successive conde lines using
mplus∗, which in turn relies on mplus. We use the same
implicit package c for each conde line. To avoid divergence,
we treat the lines of each conde as a single inc stream.

(define-syntax conde

(syntax-rules ()
(( (g0 g . . . ) (g1 ĝ . . . ) . . . )
(λG (c) (inc (mplus∗ (bind∗ (g0 c) g . . . )

(bind∗ (g1 c) ĝ . . . ) . . . ))))))

(define-syntax mplus∗

(syntax-rules ()
(( e) e)
(( e0 e . . . ) (mplus e0

(λF () (mplus∗ e . . . ))))))

The pattern structure of case-value is similar to case∞

in that it lists the scoped variables. If u’s value is a variable,
the scope of e0 includes u’s value. If u’s value is a pair, then
the scope of e1 includes each item in the pair. Otherwise,
the scope of e2 includes the value of u.

(define-syntax case-value
(syntax-rules ()

(( u ((t1) e0) ((at dt) e1) ((t2) e2))
(let ((t u))

(cond
((var? t) (let ((t1 t)) e0))
((pair? t) (let ((at (car t)) (dt (cdr t))) e1))
(else (let ((t2 t)) e2)))))))

The function make-tag-A is used to create the symbol o

and number o goal constructors and contains the essence of
what those operators accomplish. Elements of A act as dae-
mons. These daemons make certain that associations which
are added to the substitution do not violate A’s constraints.
In addition, D may contain a disequality constraint between,
say, a variable y and 3; if we also know that y must be a
symbol, then the disequality constraint is subsumed by the
symbol constraint on y , and can be discarded.

(define make-tag-A
(lambda (tag pred)

(lambda (u)
(λG (c : S D A T )

(case-value (walk u S)
((x ) (cond

((make-tag-A+ x tag pred c S D A T )
⇒ unit)

(else (mzero))))
((au du) (mzero))
((u) (cond

((pred u) (unit c))
(else (mzero)))))))))

(define make-tag-A+
(lambda (u tag pred c S D A T )

(cond
((ext-A (walk u S) tag pred S A) ⇒
(lambda (A+)

(cond
((null? A+) c)
(else (let ((D (subsume A+ D))

(A (append A+ A)))
(subsume-A S D A T ))))))

(else #f))))

(define subsume-A
(lambda (S D A T )

(let ((x∗ (rem-dups (map lhs A))))
(subsume-A+ x∗ S D A T ))))

(define subsume-A+
(lambda (x∗ S D A T )

(cond
((null? x∗) ‘(,S ,D ,A ,T ))
(else (let ((x (car x∗)))

(let ((D/T (update-D/T x S D A T )))
(let ((D (car D/T )) (T (cdr D/T )))

‘(,S ,D ,A ,T ))))))))

(define ext-A
(lambda (x tag pred S A)

(cond
((null? A) ‘((,x . (,tag . ,pred))))
(else
(let ((a (car A)) (A (cdr A)))

(let ((a-tag (pr�tag a)))
(cond

((eq? (walk (lhs a) S) x )
(cond

((tag=? a-tag tag) ’())
(else #f)))

(else (ext-A x tag pred S A)))))))))

(define boolean o

(lambda (x )
(conde

((≡ #f x ))
((≡ #t x )))))

16



(define symbol o (make-tag-A ’sym symbol? ))

(define number o (make-tag-A ’num number? ))

(define pr�tag (lambda (pr) (car (rhs pr))))

(define pr�pred (lambda (pr) (cdr (rhs pr))))

Here is the implementation of the remaining goal con-
structors. The definitions of 6≡ and ≡ both use unify (sec-
tion D.3). But, when we succeed by invoking unit, we pass
a different substitution. In the ≡ case, we pass the (possi-
bly) extended substitution, however, in the 6≡ case, we pass
the original substitution. In the 6≡ case, the actual exten-
sion (here called the prefix ) is a disequality constraint. We
can take that constraint and make sure that A and T are
okay with each association in the prefix. Those associations
that are not dropped from the prefix are added as a new
constraint to D . (There is a subtlety in the simplicity of the
definition of prefix-S : we know that if we keep taking cdrs
starting at S+, assuming that S+ and S are not eq?, we will
eventually arrive at S . This eq? is not strictly necessary,
since we are basically trying to determine if the lengths of
the two lists are the same but more efficiently.)

(define 6≡
(lambda (u v)

(λG (c : S D A T )
(cond

((unify u v S) ⇒ (post-unify- 6≡ S D A T ))
(else (unit c))))))

(define post-unify- 6≡
(lambda (S D A T )

(lambda (S+)
(cond

((eq? S+ S) (mzero))
(else (let ((D+ (list (prefix-S S+ S))))

(let ((D+ (subsume A D+)))
(let ((D+ (subsume T D+)))

(let ((D (append D+ D)))
(unit ‘(,S ,D ,A ,T )))))))))))

(define prefix-S
(lambda (S+ S)

(cond
((eq? S+ S) ’())
(else (cons (car S+) (prefix-S (cdr S+) S))))))

(define subsume
(lambda (A/T D)

(remp (lambda (d) (exists (subsumed-pr? A/T ) d))
D)))

(define subsumed-pr?
(lambda (A/T )

(lambda (pr-d)
(let ((u (rhs pr-d)))

(cond
((var? u) #f)
(else
(let ((pr (assq (lhs pr-d) A/T )))

(and pr
(let ((tag (pr�tag pr)))

(cond
((and (tag? tag)

(tag? u)
(tag=? u tag)))

(((pr�pred pr) u) #f)
(else #t)))))))))))

Just as 6≡ checks A and T before extending D , ≡ must
first check D , A, and T (all of which might change) before
succeeding.

(define ≡
(lambda (u v)

(λG (c : S D A T )
(cond

((unify u v S) ⇒
(post-unify-≡ c S D A T ))

(else (mzero))))))

(define post-unify-≡
(lambda (c S D A T )

(lambda (S+)
(cond

((eq? S+ S) (unit c))
((verify-D D S+) ⇒
(lambda (D)

(cond
((post-verify-D S+ D A T ) ⇒ unit)
(else (mzero)))))

(else (mzero))))))

(define verify-D
(lambda (D S)

(cond
((null? D) ’())
((verify-D (cdr D) S) ⇒
(lambda (D+)

(verify-D+ (car D) D+ S)))
(else #f))))

(define verify-D+
(lambda (d D S)

(cond
((unify∗ d S) ⇒
(lambda (S+)

(cond
((eq? S+ S) #f)
(else (cons (prefix-S S+ S) D)))))

(else D))))

(define post-verify-D
(lambda (S D A T )

(cond
((verify-A A S) ⇒
(post-verify-A S D T ))

(else #f))))

(define verify-A
(lambda (A S)

(cond
((null? A) ’())
((verify-A (cdr A) S) ⇒
(lambda (A0)

(let ((u (walk (lhs (car A)) S))
(tag (pr�tag (car A)))
(pred (pr�pred (car A))))

(cond
((var? u)
(cond

((ext-A u tag pred S A0) ⇒
(lambda (A+)

(append A+ A0)))
(else #f)))

(else (and (pred u) A0))))))
(else #f))))

17



(define post-verify-A
(lambda (S D T )

(lambda (A)
(let ((D (subsume A D)))

(cond
((verify-T T S) ⇒ (post-verify-T S D A))
(else #f))))))

(define verify-T
(lambda (T S)

(cond
((null? T ) ’())
((verify-T (cdr T ) S)
⇒ (verify-T+ (lhs (car T )) T S))

(else #f))))

(define verify-T+
(lambda (x T S)

(lambda (T0)
(let ((tag (pr�tag (car T )))

(pred (pr�pred (car T ))))
(case-value (walk x S)

((x ) (cond
((ext-T+ x tag pred S T0) ⇒
(lambda (T+) (append T+ T0)))

(else #f)))
((au du) (cond

(((verify-T+ au T S) T0) ⇒
(verify-T+ du T S))

(else #f)))
((u) (and (pred u) T0)))))))

(define post-verify-T
(lambda (S D A)

(lambda (T )
(subsume-T T S (subsume T D) A ’()))))

(define subsume-T
(lambda (T+ S D A T )

(let ((x∗ (rem-dups (map lhs A))))
(subsume-T+ x∗ T+ S D A T ))))

(define subsume-T+
(lambda (x∗ T+ S D A T )

(cond
((null? x∗) (let ((T (append T+ T )))

‘(,S ,D ,A ,T )))
(else (let ((x (car x∗)) (x∗ (cdr x∗)))

(let ((D/T (update-D/T x S D A T+)))
(let ((D (car D/T )) (T+ (cdr D/T )))

(subsume-T+ x∗ T+ S D A T ))))))))

(define update-D/T
(lambda (x S D A T )

(cond
((null? A) (let ((T (remp (lambda (t)

(eq? (lhs t) x ))
T )))

‘(,D . ,T )))
(else
(let ((a (car A)))

(cond
((and (eq? (lhs a) x )

(or (tag=? (pr�tag a) ’sym)
(tag=? (pr�tag a) ’num)))

(update-D/T+ x ’() S D T ))
(else (update-D/T x S D (cdr A) T ))))))))

(define update-D/T+
(lambda (x T+ S D T )

(cond
((null? T )
‘(,D . ,T+))

(else
(let ((t (car T ))

(T (cdr T )))
(cond

((eq? (lhs t) x )
(let ((D (ext-D x (pr�tag t) D S)))

(update-D/T+ x T+ S D T )))
(else
(let ((T+ (cons t T+)))

(update-D/T+ x T+ S D T )))))))))

(define ext-D
(lambda (x tag D S)

(cond
((exists

(lambda (d)
(and (null? (cdr d))

(let ((y (lhs (car d)))
(u (rhs (car d))))

(and
(eq? (walk y S) x )
(tag? u)
(tag=? u tag)))))

D)
D)

(else (cons ‘((,x . ,tag)) D)))))

The final goal constructor, absent o, takes a tag , which
must be a symbol, and a term u (possibly a variable), and
generates a constraint requiring that that tag not occur
within the term.

The main driver of absent o is absento+, which takes care
of the three possible types of terms: variables, pairs, and
ground values.

If the term is a variable, we add the constraint provided it
is not already present. For ground values, we ensure that the
ground value does not in fact match the tag, which would
violate the constraint. For pairs, we recur on the car and the
cdr , which might themselves generate further constraints.
This guarantees that every pair has a left-hand side that is
a variable and a right-hand side that contains both the tag
and a predicate that determines whether other tags do not
match (using the value returned by make-pred-T ).

ext-T is the helper which actually adds the newly-formed
constraint to T , provided it is not already present.

(define make-pred-T
(lambda (tag)

(lambda (x )
(not (and (tag? x ) (tag=? x tag))))))

(define absent o

(lambda (tag u)
(cond

((not (tag? tag)) fail)
(else
(λG (c : S D A T )

(cond
((absento+ u tag c S D A T )
⇒ unit)

(else (mzero))))))))

18



(define absento+
(lambda (u tag c S D A T )

(case-value (walk u S)
((x )
(let ((T+ (ext-T x tag S T )))

(cond
((null? T+) c)
(else
(let ((D (subsume T+ D)))

(subsume-T T+ S D A T ))))))
((au du)
(let ((c (absento+ au tag c S D A T )))

(and c
(let ((S (c�S c))

(D (c�D c))
(A (c�A c))
(T (c�T c)))

(absento+ du tag c S D A T )))))
((u)
(cond

((and (tag? u) (tag=? u tag)) #f)
(else c))))))

(define ext-T
(lambda (x tag S T )

(cond
((null? T )
(let ((pred (make-pred-T tag)))

‘((,x . (,tag . ,pred)))))
(else
(let ((t (car T )) (T (cdr T )))

(let ((t-tag (pr�tag t)))
(cond

((eq? (walk (lhs t) S) x )
(cond

((tag=? t-tag tag) ’())
(else (ext-T x tag S T ))))

((tag=? t-tag tag)
(let ((t-pred (pr�pred t)))

(ext-T+ x tag t-pred S T )))
(else (ext-T x tag S T )))))))))

(define ext-T+
(lambda (x tag pred S T )

(cond
((null? T ) ‘((,x . (,tag . ,pred))))
(else
(let ((t (car T )))

(let ((t-tag (pr�tag t)))
(cond

((eq? (walk (lhs t) S) x )
(cond

((tag=? t-tag tag) ’())
(else
(ext-T+ x tag pred S

(cdr T )))))
(else
(ext-T+ x tag pred S

(cdr T ))))))))))

D.2 miniKanren Helpers

We have chosen vectors to represent logic variables merely
as a simple way to distinguish variables from other valid
datatypes. This could have been avoided any number of
ways. For example, each variable could have been given a
unique index.

The function rem-dups generates a list of unique logic
variables. It is used in two places, both times merely to avoid
re-doing computations.

(define var (lambda (dummy) (vector dummy)))
(define var? (lambda (x ) (vector? x )))

(define rem-dups
(lambda (x∗)

(cond
((null? x∗) ’())
((memq (car x∗) (cdr x∗))
(rem-dups (cdr x∗)))

(else (cons (car x∗)
(rem-dups (cdr x∗)))))))

(define tag?
(lambda (tag)

(symbol? tag)))

(define tag=?
(lambda (tag1 tag2)

(eq? tag1 tag2)))

(define lhs (lambda (pr) (car pr)))
(define rhs (lambda (pr) (cdr pr)))

(define succeed (≡ #f #f))
(define fail (≡ #f #t))

This definition of walk assumes a simple representation
of substitutions. Various persistent structures, such as those
in (Okasaki 1999), would improve the performance.

(define walk
(lambda (u S)

(cond
((and (var? u) (assq u S)) ⇒
(lambda (pr) (walk (rhs pr) S)))

(else u))))

D.3 The Unifier

Below is unify, which uses triangular substitutions (Baader
and Snyder 2001) instead of the more common idempotent
substitutions. After possibly walking the first two arguments
to get a representative, the two-pairs case is treated. Oth-
erwise, if there are not two pairs, then unify-nonpair gets
the two representatives, which might extend the substitu-
tion. There is no explicit recursion in unify-nonpair , but
unify-nonpair calls ext-S , which calls a recursive function,
occurs

√
.

(define unify
(lambda (u v S)

(let ((u (walk u S)) (v (walk v S)))
(cond

((and (pair? u) (pair? v))
(let ((S (unify (car u) (car v) S)))

(and S (unify (cdr u) (cdr v) S))))
(else (unify-nonpair u v S))))))

(define unify-nonpair
(lambda (u v S)

(cond
((eq? u v) S)
((var? u) (ext-S u v S))
((var? v) (ext-S v u S))
((equal? u v) S)
(else #f))))

19



(define ext-S
(lambda (x v S)

(case-value v
((y) (cons ‘(,x . ,y) S))
((au du) (cond

((occurs
√

x v S) #f)
(else (cons ‘(,x . ,v) S))))

((v) (cons ‘(,x . ,v) S)))))

(define occurs
√

(lambda (x v S)
(case-value (walk v S)

((y) (eq? y x ))
((av dv) (or (occurs

√
x av S)

(occurs
√

x dv S)))
((v) #f))))

D.4 The Reifier

The role of reify is to make the relevant information that
is stored in the final state final-c (see run) as accessible
as possible. Realizing that there might be a lot of relevant
information about the variables in the final value of the
variable created in run makes it essential that much care
goes into writing the reifier. Specifically, we insist on a kind
of Church-Rosser property (Barendregt 1984). Regardless
of how a program is written, if it terminates it should be
equal to every semantically equivalent program. For exam-
ple, swapping conjuncts in a fresh should not change the
appearance of the answers. But this equality must hold for
D , A, and T which is why we sort lexicographically.

reify-S is the heart of the reifier. reify-S takes an arbi-
trary value v and a substitution S , and returns a substi-
tution that maps every distinct variable in v to a unique
symbol. The trick to maintaining left-to-right ordering of
the subscripts on these symbols is to process v from left to
right, as can be seen in the case of reify-S which handles
pairs. When reify-S encounters a variable, it determines if
we already have a mapping for that entity. If not, reify-S
extends the substitution with an association between the
variable and a new, appropriately-subscripted symbol built
using reify-name.

(define walk∗

(lambda (v S)
(case-value (walk v S)

((x ) x )
((av dv)
(cons (walk∗ av S) (walk∗ dv S)))

((v) v))))

(define reify-S
(lambda (v S)

(case-value (walk v S)
((x ) (let ((n (length S)))

(let ((name (reify-name n)))
(cons ‘(,x . ,name) S))))

((av dv) (let ((S (reify-S av S)))
(reify-S dv S)))

((v) S))))

(define reify-name
(lambda (n)

(string�symbol
(string-append " " "." (number�string n)))))

The remaining helpers form the final value, which in-
cludes relevant information in the constraints.

(define reify
(lambda (x )

(lambda (c)
(let ((S (c�S c)) (D (c�D c))

(A (c�A c)) (T (c�T c)))
(let ((v (walk∗ x S)))

(let ((S (reify-S v ’())))
(reify+ v S

(let ((D (remp
(lambda (d) (anyvar? d S))
D)))

(rem-subsumed D))
(remp

(lambda (a)
(var? (walk (lhs a) S)))

A)
(remp

(lambda (t)
(var? (walk (lhs t) S)))

T ))))))))

In the definition of reify+ below, we have removed the
predicates from tag-predicate pairs of A and T , but we still
use the names A and T to refer to these new data structures.

(define reify+
(lambda (v S D A T )

(let ((D (subsume A D)))
(let ((A (map (lambda (a)

(let ((x (lhs a))
(tag (pr�tag a)))

‘(,x . ,tag)))
A))

(T (map (lambda (t)
(let ((x (lhs t))

(tag (pr�tag t)))
‘(,x . ,tag)))

T )))
(form (walk∗ v S)

(walk∗ D S)
(walk∗ A S)
(rem-subsumed-T (walk∗ T S)))))))

(define form
(lambda (v D A T )

(let ((fd (drop-dot-D (sorter (map sorter D))))
(f a (sorter (map sort-part (partition∗ A))))
(ft (drop-dot-T (sorter T ))))

(let ((fb (append ft f a)))
(cond

((and (null? fd) (null? fb)) v)
((null? fd) ‘(,v . ,fb))
((null? fb) ‘(,v . ((6≡ . ,fd))))
(else ‘(,v ( 6≡ . ,fd) . ,fb)))))))

(define drop-dot-D
(lambda (D)

(map (lambda (d)
(map (lambda (pr)

(let ((x (lhs pr))
(u (rhs pr)))

‘(,x ,u)))
d))

D)))

20



(define drop-dot-T
(lambda (T )

(map (lambda (t)
(let ((x (lhs t))

(tag (rhs t)))
‘(absent ,tag ,x )))

T )))

(define sorter (lambda (ls) (sort lex6? ls)))

(define sort-part
(lambda (pr)

(let ((tag (car pr))
(x∗ (sorter (cdr pr))))

‘(,tag . ,x∗))))

(define anyvar?
(lambda (u S)

(case-value u
((x ) (var? (walk x S)))
((au du) (or (anyvar? au S)

(anyvar? du S)))
((u) #f))))

(define rem-subsumed
(lambda (D)

(let loop ((D D) (D+ ’()))
(cond

((null? D) D+)
((or (subsumed? (car D) (cdr D))

(subsumed? (car D) D+))
(loop (cdr D) D+))

(else (loop (cdr D)
(cons (car D) D+)))))))

(define subsumed?
(lambda (d D)

(cond
((null? D) #f)

(else (let ((d̂ (unify∗ (car D) d)))

(or (and d̂ (eq? d̂ d))
(subsumed? d (cdr D))))))))

(define rem-subsumed-T
(lambda (T )

(let loop ((T T ) (Tˆ ’()))
(cond

((null? T ) Tˆ)
(else
(let ((x (lhs (car T )))

(tag (rhs (car T ))))
(cond

((or (subsumed-T? x tag (cdr T ))
(subsumed-T? x tag Tˆ))

(loop (cdr T ) Tˆ))
(else (loop (cdr T )

(cons (car T ) Tˆ))))))))))

(define subsumed-T?
(lambda (x tag1 T )

(cond
((null? T ) #f)
(else
(let ((y (lhs (car T )))

(tag2 (rhs (car T ))))
(or

(and (eq? y x ) (tag=? tag2 tag1))
(subsumed-T? x tag1 (cdr T ))))))))

(define unify∗

(lambda (S+ S)
(unify (map lhs S+) (map rhs S+) S)))

(define part
(lambda (tag A x∗ y∗)

(cond
((null? A)
(cons ‘(,tag . ,x∗) (partition∗ y∗)))

((tag=? (rhs (car A)) tag)
(let ((x (lhs (car A))))

(let ((x∗ (cond
((memq x x∗) x∗)
(else (cons x x∗)))))

(part tag (cdr A) x∗ y∗))))
(else
(let ((y∗ (cons (car A) y∗)))

(part tag (cdr A) x∗ y∗))))))

(define partition∗

(lambda (A)
(cond

((null? A) ’())
(else
(part (rhs (car A)) A ’() ’())))))

The definition of lex6? along with datum�string uses the
effectful operator display , The functional version is tedious,
because of the number of different built-in Scheme types,
and we have opted to use this version instead.

(define lex6?
(lambda (x y)

(string6? (datum�string x ) (datum�string y))))

(define datum�string
(lambda (x )

(call-with-string-output-port
(lambda (p) (display x p)))))

D.5 Impure Control Operators

For completeness, we define three additional miniKanren
goal constructors: project, which can be used to access the
values of variables, and conda and condu, which can be
used to prune the search tree of a program. The examples
from Thin Ice of The Reasoned Schemer (Friedman et al.
2005) demonstrate how conda and condu can be useful
and the pitfalls that await the unsuspecting reader. Also,
we have included an additional operator once o, defined in
terms of condu, which forces the input goal to succeed at
most once.

(define-syntax project
(syntax-rules ()

(( (x . . . ) g g∗ . . . )
(λG (c : S D A T )

(let ((x (walk∗ x S)) . . . )
((fresh () g g∗ . . . ) c))))))

(define-syntax conda

(syntax-rules ()
(( (g0 g . . . ) (g1 ĝ . . . ) . . . )
(λG (c)

(inc
(if a ((g0 c) g . . . )

((g1 c) ĝ . . . ) . . . ))))))

21



(define-syntax if a

(syntax-rules ()
(( ) (mzero))
(( (e g . . . ) b . . . )
(let loop ((c∞ e))

(case∞ c∞

(() (if a b . . . ))
((f ) (inc (loop (f ))))
((a) (bind∗ c∞ g . . . ))
((a f ) (bind∗ c∞ g . . . )))))))

(define-syntax condu

(syntax-rules ()
(( (g0 g . . . ) (g1 ĝ . . . ) . . . )
(λG (c)

(inc
(ifu ((g0 c) g . . . )

((g1 c) ĝ . . . ) . . . ))))))

(define-syntax ifu

(syntax-rules ()
(( ) (mzero))
(( (e g . . . ) b . . . )
(let loop ((c∞ e))

(case∞ c∞

(() (ifu b . . . ))
((f ) (inc (loop (f ))))
((c) (bind∗ c∞ g . . . ))
((c f ) (bind∗ (unit c) g . . . )))))))

(define once o (lambda (g) (condu (g))))

22


