
Entangled abstract domains
for higher-order programs

Shuying Liang Matthew Might
University of Utah

{liangsy,might}@cs.utah.edu

Abstract
Relational abstract domains are a cornerstone of static analysis for
first-order programs. We explore challenges in generalizing rela-
tional abstract domains to higher-order program analysis. We find
two reasonable, orthogonal and complementary interpretations of
relational domains in a higher-order setting. The first technique,
locally relational abstract domains, are relational abstract domains
that travel with the environments found within closures. These ab-
stract domains record invariants discovered within a given scope.
The second technique, globally entangled abstract domains, al-
lows relational abstract domains to quantify over the concrete con-
stituents of an abstract resource. This approach enables the discov-
ery of interprocedural, interstructural and intrastructural program
invariants. We develop the techniques for a lambda calculus en-
riched with structs. We structurally abstract the concrete semantics;
we develop a logic for both the local and global generalizations;
and then we integrate both logics into the abstraction. By restricting
the logics, existing relational abstract domains (or their entangled,
higher-order generalizations) are recoverable. To demonstrate the
applicability of the framework, higher-order variants of both oc-
tagon and polyhedral domains are formulated as such restrictions.

1. Introduction: Relating higher-order values
Control-flow analysis is no longer enough for higher-order pro-
grams. In most instances, control-flow analysis (CFA) amounts to
a “lambda-flow” analysis [8, 18, 19]. That is, control-flow analy-
sis discovers where values (commonly abstracted as lambda terms)
may flow. It does not discover what values may flow, or more pre-
cisely, the relationships between values. Despite these limitations,
the bulk of the literature on higher-order program analysis focuses
on improving the analytic precision rather than the semantic depth
of the invariants discovered.

What higher-order program analysis needs
is an analog to relational abstract domains.

Outline In this work, we grapple with a shortcoming of higher-
order program analysis: imprecise, non-relational abstract domains.
In bringing relational abstraction to abstract interpretation [3, 4]
of higher-order programs, we find two distinct, orthogonal yet
complementary generalizations of the concept:

1. locally relational abstract domains that travel with closed en-
vironments and mimic traditional relational abstract domains;
and

2. globally “entangled” abstract domains that generalize relational
abstract domains with universal quantification over concretiza-
tion.1

We also formulate the entangled equivalents of well-known rela-
tional abstract domains: entangled octagon domains [16] and en-
tangled polyhedral domains [5].

1.1 Example: Capturing array bounds
Before adapting relational abstract domains to higher-order pro-
gram analysis, we pause to motivate by example why inferring re-
lational invariants is useful in a higher-order setting. Array bounds
analysis is a classic application of relational abstract domains for
flat, first-order languages. While most higher-order languages in-
sert run-time array-bounds checks for security, reasoning about ar-
rays is still important for efficiency, correctness and stability. Con-
sider the expression:

(f a)

a classical flow analysis could determine that closures over the
lambda terms λ42 and λ13 may flow to f and an array allocated
from expression 12 may flow to the reference a. Suppose then that
λ42 is:

(λ (arr)
(array-ref arr i)) ; arr[i] in most languages

where the variable i is captured from an outer lexical scope. An
optimizing compiler—or an analysis concerned with proving error-
freedom—will ask, “What is the relationship between the length of
the array arr and the value of i?”

While the previous question is sensible, many other questions
one might ask in a flat-environment, first-order setting are ambigu-
ous in a higher-order setting. Consider, for example, the question,
“What is the relationship between the variable i and the array
bound to a?” In a flat, first-order setting, there is but one copy of a
variable, and they all exist in the same scope.

In a higher-order setting, there could be multiple closures over
λ42 living at the same time, each capturing its own binding to
(and value of) i. If the same capturing happens to a as well, the
possible meanings of this question are multiplied by the number of
such capturings. Entangled domains provide a means of specifying,
precisely, which instances of a and i are of concern.

1.2 Example: Capturing intrastructural relationships
Classical CFAs miss low-hanging fruit when fields within a struct
or an object are related to one another. Consider the constructor for
a vector in a 3D engine:

1 Quantification over all constituents of an abstract value is what “entan-
gles” them.

(define (make-3d-vector vx vy vz)
(struct [x vx]

[y vy]
[z vz]
[norm (+ (* vx vx)

(* vy vy) (* vz vz))]))

With the vector’s norm being a frequently used value, the 3d-vector
struct caches it upon construction. It is not unreasonable to expect
an analyzer to discover that:

(let* ([vx (3d-vector-x v)]
[vy (3d-vector-y v)]
[vz (3d-vector-z v)])

(sqrt (+ (* vx vx) (* vy vy) (* vz vz))))

is equivalent to:

(sqrt (3d-vector-norm v))

Yet, standard higher-order flow analyses cannot infer a relationship
between the fields within a struct. A state-of-the-art CFA will infer
that the fields x, y, z and norm are numeric, but it will not detect
the relationship between them.

2. The setting: Enriched, a-normalized lambda
calculus

We conduct our investigation of entangled domains from the per-
spective of the A-Normal Form (ANF) lambda calculus [6]. A-
Normal Form fixes the order of evaluation and atomizes com-
plex calculations, which makes it a popular intermediate format for
functional compilation.

We prefer ANF’s atomization of complex expressions because
it simplifies the number of invariants one might establish at any
program point. To allow for rich, intrastructural relationships, the
grammar for our extension of ANF (Figure 1) includes integers,
primitives, structs and arrays.

3. Concrete semantics
In this section, we’ll present a standard CESK-style semantics
for ANF, but with a pointer refinement that threads continuations
through the store [20].

Figure 2 contains the concrete state-space for this machine.
Another standard addition in preparation for static analysis is a
time component, Time. This component will contain an ever-
increasing program history that, under abstraction, will set the
context in context-sensitivity. Structs and arrays are encoded by
a base location ℓ, so that the address of the field named v is
fieldp(ℓ, v) and the address of index z is elemp(ℓ, z). Structs and
arrays behave identically, so to save space, we present the semantics
only for structs.

3.1 Concrete semantics
The concrete semantics for our dialect of ANF is small-step transi-
tion relation through the state-space Σ:

(⇒) ⊆ Σ× Σ.

A few helper functions aid in the definition of this relation. For
the interpretation of relations and operators, we use the functions
R and O:

R : Rel → P (D∗)

O : Op → (D∗ → D)

We assume the natural definitions of these functions, and will re-
purpose them shortly for the definition of relational logics. For ma-

ς ∈ Σ = Exp× Env × Store ×Kont × Time

ρ ∈ Env = Var → Addr

σ ∈ Store = Addr → D

κ ∈ Cont ::= letk(v, e, ρ, a)

| haltk

d ∈ D = Clo + Bas + Loc +Kont

clo ∈ Clo = Lam× Env

ℓ ∈ Loc is an infinite set of struct locations

bas ∈ Bas = Z+ {true, false}
a ∈ Addr ::= bindp(v, t)

| contp(lam, t)

| elemp(ℓ, z)

| fieldp(ℓ, v)

t ∈ Time is an infinite set of contexts.

Figure 2. Concrete CESK-style state-space for ANF.

nipulating time, the opaque function tick determines succession:

tick : Σ → Time .

For allocating arrays/objects, the opaque function alloc selects a
fresh location:

alloc : Σ → Loc.

The function A : AExp×Env × Store ⇀ D evaluates atomic
expressions:

A(z, ρ, σ) = z

A(#t, ρ, σ) = true

A(#f, ρ, σ) = false

A(v, ρ, σ) = σ(ρ(v))

A(lam, ρ, σ) = (lam, ρ)

A([[(op æ1 . . .æn)]], ρ, σ) = O⟨A(æ1, ρ, σ), . . . ,A(æn, ρ, σ)⟩
A([[(R æ1 . . .æn)]], ρ, σ) = ⟨A(æ1, ρ, σ), . . . ,A(æn, ρ, σ)⟩ ∈ R(R)

A([[(struct-ref æ v)]], ρ, σ) = σ(fieldp(ℓ, v))

where ℓ = A(æ, ρ, σ)

A([[(array-ref æ æ′
)]], ρ, σ) = σ(elemp(ℓ, z))

where ℓ = A(æ, ρ, σ)

z = A(æ′, ρ, σ)

Function return Atomic expressions in tail position represent
function return. Their transition pops the current continuation
frame and resumes execution at the point of the function call within
it:

ς︷ ︸︸ ︷
(æ, ρ, σ, letk(v, e, ρ′, a), t)

⇒ (e, ρ′[v 7→ a′], σ[a′ 7→ A(æ, ρ, σ)], κ, t′), where

a′ = (v, t′) κ = σ(a)

κ = σ(a) t′ = tick(ς).

f,æ ∈ AExp ::= v | lam | z | #f | #t
| (prim æ1 . . .æn)

| (struct-ref æ v)

| (array-ref æarray æindex)

lam ∈ Lam ::= (λ (v1 . . . vn) e)

ce ∈ CExp ::= (f æ1 . . .æn)

| (if æ etrue efalse)

| (array-alloc æsize)

| (struct (v1 æ1) . . . (vn æn))

| (struct-set! æstruct v ævalue)

| (array-set! æarray æindex ævalue)

| (let ((v æ)) e)

e ∈ Exp ::= ce

| æ

| (let ((v ce)) e)

prim ∈ Prim = Op+ Rel

op ∈ Op = {+, -, *, . . .}
R ∈ Rel = {=, <=, <, . . .}
v ∈ Var is a set of identifiers

z ∈ Z is the set of integers.

Figure 1. An enriched A-normal form lambda calculus.

Tail function call Tail function call looks up the closure to be
invoked and binds each argument to the corresponding variable:

ς︷ ︸︸ ︷
([[(f æ1 . . .æn)]], ρ, σ, κ, t) ⇒ (ce, ρ′, σ′, κ, t′), where

([[(λ (v1 . . . vn) e)]], ρ
′) = A(f, ρ, σ)

a′i = bindp(vi, t
′)

ρ′′ = ρ′[vi 7→ a′i]

σ′ = σ[a′i 7→ A(æi, ρ, σ)]

t′ = tick(ς).

Non-tail call Non-tail function call looks up the closure to be
invoked and binds each argument to the corresponding variable:

ς︷ ︸︸ ︷
([[(let ((v′ (f æ1 . . .æn))) e

′
)]], ρ, σ, κ, t) ⇒ (ce, ρ′′, σ′, κ′, t′),

where (

lam︷ ︸︸ ︷
[[(λ (v1 . . . vn) e)]], ρ

′) = A(f, ρ, σ), a′i = bindp(vi, t
′)

ρ′′ = ρ′[vi 7→ a′i], aκ = contp(lam, t′)

σ′ = σ[a′i 7→ A(æi, ρ, σ),aκ 7→ κ],

κ′ = letk(v′, e′, ρ, aκ) t′ = tick(ς).

Struct allocation To allocate a struct, the transition first allocates
a location, and then installs the values of its fields at the correspond-
ing addresses:

ς︷ ︸︸ ︷
([[(let ((v′ (struct (v1 æ1) . . . (vn æn)))) e

′
)]], ρ, σ, κ, t)

⇒ (e′, ρ′, σ′, κ, t′),

where t′ = tick(ς), a = bindp(v′, t′)

a′i = fieldp(ℓ, vi), ρ′ = ρ[v′ 7→ a]

σ′ = σ[a 7→ ℓ, a′i 7→ A(æi, ρ, σ)]

ℓ = alloc(ς).

Remaining cases Concrete transition rules for the remaining
cases (array allocation and access, array/struct mutation, and tail
variants thereof) are straightforward given the four above. Arrays
behave like structs, with numbered indices instead of field names
and a distinguished size field at the location storing the size of
the array. We omit them to save space and focus the presentation
on the topic of concern: incorporating relational and entangled ab-
stractions into higher-order program analysis.

4. First attempt: Structural abstraction
On the road to richer abstract domains for higher-order program
analysis, we first pause at classical higher-order program analysis
to observe its shortcomings with respect to encoding relational in-
variants. The subsequent three sections develop the machinery (lo-
cally relational and globally entangled abstract domains) necessary
to rectify these shortcomings, and the following section integrates
all three.

Applying the systematic abstraction of Van Horn and Might [11,
20] can transform the concrete state-space into an abstract state-
space immediately suitable for an intensional static analysis (Fig-
ure 3). Classical control-flow analyses may be cast as instantiations
of this state-space with choices for the set of abstract times and allo-
cation strategies determining which classical CFA is recovered (see
[20] for more details).

ς̂ ∈ Σ̂ = Exp× Ênv × Ŝtore × K̂ont × T̂ime

ρ̂ ∈ Ênv = Var → Âddr

σ̂ ∈ Ŝtore = Âddr → D̂

κ̂ ∈ Ĉont ::= letk(v, e, ρ̂, â)

| haltk

d̂ ∈ D̂ = P
(
Ĉlo + B̂as + L̂oc + K̂ont

)
ĉlo ∈ Ĉlo = Lam× Ênv

ℓ̂ ∈ L̂oc is a finite set of struct locations

b̂as ∈ B̂as = Ẑ+ {true, false}

â ∈ Âddr ::= bindp(v, t̂)

| contp(lam, t̂)

| fieldp(ℓ̂, v)

| elemp(ℓ̂, ẑ)

t̂ ∈ T̂ime is a finite set of contexts

ẑ ∈ Ẑ is a partitioning abstraction of the integers.

Figure 3. A structural abstract state-space for ANF.

Classical approaches to improving reasoning ability in control-
flow analysis have focused on tweaking the semantic leaves of this
state-space—the set of times, the set of basic values and the set
of locations. In essence, this tweaking takes place by modifying
the abstraction over these sets, which can be encoded as a single
function:

α : (Bas → B̂as) ∪ (Time → T̂ime) ∪ (Loc → L̂oc).

While tweaking these domains (and their allocation) can improve
precision (or speed), no amount of tweaking can force these do-
mains to capture invariants that relate variables and addresses to
one another.

Why classical CFAs fall short: An example A simple example,
involving the multiplication of a number by itself, illustrates this
limitation concisely. Consider the analysis of the expression (* x
x). If we choose signs—{−, 0,+}—as the abstract domain rep-
resenting integers, a classical CFA will fail to determine that the
result is always non-negative. It fails because the analysis does not
see an abstract number multiplied by itself ; it sees two abstract
numbers multiplied together. Relational abstract domains can en-
code that a value is the square of another value. While classical
CFAs could be patched to handle this specific case, this is a band-
aid; relational abstract domains are the cure.

5. Enriching abstract domains with relational
knowledge

To capture deeper invariants—invariants that relate variables or
program addresses to one another—the abstract state-space must
be enriched. First-order program analyses for languages with flat
namespaces do this (at a conceptual level) by constructing the di-
rect product of an intensional abstraction with a relational abstrac-
tion [5].

Constructing the direct product of a higher-order analysis with
a relational abstract domain is not straightforward, because in a
higher-order program, there can be many bindings to each variable
that co-live with each other. Traditional relational domains expect

θ ∈ LProps = P (LProp)

ϕ ∈ LProp ::= R(tl1, . . . , tln)

| ϕ1 ∨ ϕ2

| ϕ1 ∧ ϕ2

| ¬ϕ

tl ∈ LTerm ::= v | d
| op(tl1, . . . , tln)

Figure 4. A logic for environment-local environments.

a finite number of bindings (in fact, just one) to program variables.
To adapt relational abstract domains, two options emerge:

1. Locally relational abstract domains: Traditional relational ab-
stract domains may accompany abstract binding environments
(ρ̂), since for any binding environment there is a finite number
of variables in scope; and

2. Globally entangled abstract domains: By allowing abstract do-
mains to quantify over the concrete constituents of an abstract
value, we can formulate a direct product with a standard ab-
stract interpretation. Entangled abstract domains allow accmu-
lated knowledge to pass interprocedurally.

For the purpose of generality, we phrase relational domains
in terms of restrictable logics. The next section defines a logic
suitable for describing invariants that hold intraprocedurally. The
following section defines a logic suitable for describing entangled
interprocedural invariants.

6. A logic for locally relational abstract domains
A local logic allows the encoding of invariants holding within a spe-
cific program scope. Propositions within this logic will travel with
abstracted environments. Existing relational domains are phrased
as restricted (finite) subsets of this logic. Sets of propositions in the
local logic are members of the set LProps (Figure 4).

Since these propositions will be distributed throughout the ab-
stract state-space, it is problematic to allow them to reason about
mutable addresses, hence the omission of terms for referencing ar-
rays and structs. (It is problematic because modifying a mutable
value would imply a crawl through the entire state-space for modifi-
cation or removal of propositions involving the impacted value.) To
reason about mutable addresses and structures, we require the en-
tangled logic of Section 7, which uses addresses directly for ground
terms.

To give a semantics to this logic, we define the three-part sat-
isfaction relation (|=), in which a local environment paired with a
store may justify a proposition:

ρ, σ |= θ iff ρ, σ |= ϕ for all ϕ ∈ θ

ρ, σ |= ϕ1 ∧ ϕ2 iff ρ, σ |= ϕ1 and ρ, σ |= ϕ2

ρ, σ |= ϕ1 ∨ ϕ2 iff ρ, σ |= ϕ1 or ρ, σ |= ϕ2

ρ, σ |= ¬ϕ iff it is not the case that ρ, σ |= ϕ

ρ, σ |= R(tl1, . . . , tln) iff ⟨Iρ
σ(tl1), . . . , Iρ

σ(tln)⟩ ∈ R(R),

Θ ∈ GProps = P (GProp)

ψ ∈ GProp ::= φ

| ∀x : ℓ̂ :: ψ

| ∀x : â :: ψ

φ ∈ GForm ::= R(tg1, . . . , tgn)

| φ1 ∨ φ2

| φ1 ∧ φ2

| ¬φ

tg ∈ GTerm ::= x | d | a
| op(tg1, . . . , tgn)

| tgarray[tg index]

| tg .v

Figure 5. An entangled logic for global (interprocedural) invari-
ants. (x comes from a set of meta-variables.)

where the term interpretation function Iρ
σ : LTerm ⇀ D roughly

mimics the argument evaluation function A from the semantics:

Iρ
σ(v) = σ(ρ(v))

Iρ
σ(d) = d

Iρ
σ[[op(tl1, . . . , tln)]] = O(op)⟨Iρ

σ(tl1), . . . , Iρ
σ(tln)⟩

7. A logic for globally entangled abstract
domains

To capture interprocedural invariants, or invariants between multi-
ple bindings to the same address, an analysis requires a logic that
can describe relationships between the values at addresses. For this
purpose, we develop an “entangled” logic whose propositions are
members of GProp (Figure 5). We term this logic entangled since
it quantifies over the constituents of abstract values, thereby entan-
gling invariants over them.

We provide a semantics for this logic through a two-part satis-
faction relation, (|=), which judges a proposition against a concrete
store:

σ |= Θ iff σ |= ψ for all ψ ∈ Θ

σ |= ∀x : ℓ̂ :: ψ iff σ |= {ℓ/x}ψ for each ℓ such that α(ℓ) = ℓ̂

σ |= ∀x : â :: ψ iff σ |= {a/x}ψ for each ℓ such that α(a) = â

σ |= φ1 ∧ φ2 iff σ |= φ1 and σ |= φ2

σ |= φ1 ∨ φ2 iff σ |= φ1 or σ |= φ2

σ |= ¬φ iff it is not the case that σ |= φ

σ |= R(tg1, . . . , tgn) iff ⟨Jσ(tg1), . . . ,Jσ(tgn)⟩ ∈ R(R),

where the term interpretation function Jσ evaluates terms into
denotable values:

Jσ(a) = σ(a)

Jσ(d) = d

Jσ[[op(tg1, . . . , tgn)]] = O(op)⟨Jσ(tg1), . . . ,Jσ(tgn)⟩
Jσ[[tg .v]] = σ(fieldp(Jσ(tg), v))

Jσ[[tg1[tg2]]] = σ(elemp(Jσ(tg1),Jσ(tg2))).

8. Second attempt: An entangled abstract
state-space

With the two adaptations of relational abstract domains available
for a higher-order analysis, we can determine an analysis by spec-
ifying an abstraction function. The high-level structure of the ab-
stract state-space stays identical to Figure 3, but the internal struc-
ture of both abstract environments and abstract stores changes to
include sets of propositions:

ρ̂ ∈ Ênv = (Var → Âddr)× LProps

σ̂ ∈ Ŝtore = (Âddr → D̂)×GProps

We assume the natural definitions and point-wise, element-wise
and member-wise lifting for partial orders over the structure of this
abstract state-space. (Sets of propositions are ordered by implica-
tion.)

We encode specific relational and entangled abstract domains
as restrictions on these logics. As such, the state-level abstraction
function, αθ

Θ : Σ → Σ̂, is parameterized by filtering sets—θ and
Θ. When abstract environments and abstract stores are abstracted
into sets of propositions, any propositions not in these filter sets
are discarded. In the forthcoming formulations of octagon and
polyhedral domains, these filters sets are defined inductively. The
abstraction function αθ

Θ is structural over the state-space, and it is
composed of a family of simpler abstraction functions (Figure 6).

9. Example: Local octagons and entangled
octagons

To tie this work back to first-order work on relational abstract
domains, we explore higher-order adaptations of a couple of well-
known abstract domains. We begin with Miné’s precise, efficient
octagon domain [16]. Miné’s octagon domain encodes constraints
between program variables x and y of the form ±x±y ≤ c, where
c is a constant between −∞ and ∞, inclusive. For example, to
encode that x = y, the abstraction would assert both x − y ≤ 0
and y − x ≤ 0.

To import the octagon abstract domain locally, we can abstract
with respect to a restricted subset of LProp:

LPropoctagon ::= v1 − v2 ≤ z

| v1 + v2 ≤ z

| −v1 − v2 ≤ z.

We can entangle the octagon domain by allowing these asser-
tions between sets of concrete addresses:

GPropoctagon ::= φ

| ∀x : â :: ψ

φ ∈ GFormoctagon ::= x1 − x2 ≤ z

| x1 + x2 ≤ z

| −x1 − x2 ≤ z.

Thus, for completeness, the instantiated octagonal abstract map for
ANF is:

α
LPropoctagon
GPropoctagon

.

10. Example: Local polyhedra and entangled
polyhedra

Classical polyhedral domains bound program state as a conjuction
of linear inequalities over program variables. It is straightforward
to restrict the local logic to produce locally polyhedral abstract

αθ
Θ(e, ρ, σ, κ, t) = (e, αθ

σ(ρ), α
θ
Θ(σ), α

θ
σ(κ), α(t))

αθ
σ(ρ) = (α(ρ), ασ(ρ) ∩ θ)
α(ρ) = λv.α(ρ(v))

ασ(ρ) = {ϕ : ρ, σ |= ϕ}

αθ
Θ(σ) = (αθ(σ), α(σ) ∩Θ)

αθ(σ) = λâ.
⊔

α(a)=â

{
αθ
σ(σ(a))

}
α(σ) = {ψ : σ |= ψ}

αθ
σ(letk(v, e, ρ, a)) = letk(v, e, αθ

σ(ρ), α(a))

αθ
σ(haltk) = haltk

αθ
σ(lam, ρ) = (lam, αθ

σ(ρ))

α(bindp(v, t)) = bindp(v, α(t))

α(contp(lam, t)) = contp(lam, α(t))

α(fieldp(ℓ, v)) = fieldp(α(loc), v)

α(elemp(ℓ, z)) = fieldp(α(loc), α(z))

α(t) determines by context-sensitivity

α(ℓ) determines by object polyvariance

α(bas) determines precision for basic values.

Figure 6. A family of abstraction maps that integrates locally re-
lational abstract domains with globally entangled abstract domains
into a structural abstraction.

domains:

LProppoly ::= z1v1 + · · ·+ znvn ≤ zbound,

and, with nominally more effort, entangled polyhedral domains:

GProppoly ::= φ

| ∀x : â :: ψ

φ ∈ GFormpoly ::= z1x1 + · · ·+ znxn ≤ zbound.

Again, for completeness, the instantiated polyhedral abstract map
for ANF is:

α
LProppoly

GProppoly
.

11. Related work
This work descends from the line of work set in motion by the
Cousots’ original work on abstract interpretation [3, 4]. It also
descends from the branch initiated by Cousot and Halbwach’s study
of (polyhedral) relational abstract domains [5]. Jones’s initiated the
second branch from which this work descends with early results in
control-flow analysis [8]. Van Horn et al. [20] provide a modern
treatment of this branch through systematic abstraction. The core
contribution of this work is to resolve the conflicts in merging the

relational branch of abstract interpretation with the higher-order
program analysis branch of abstract interpretation.

As the closest relative of this work, Might’s logic-flow analy-
sis (LFA) was a first attempt to integrate a propositional abstrac-
tion into analysis of programs in continuation-passing style [10].
Our formulation of higher-order relational abstract domains is
largely inspired by LFA’s failure. LFA places no restrictions on
sets of propositions, which leads to non-termination without crude
widening operations, nor do abstract environments travel with local
propositions. As such, LFA cannot be termed a proper or full gen-
eralization of relational abstract domains in a higher-order setting.
Given the information available, our approach seems distinct from
the Cousots’ excursion into higher-order program analysis [2],
where the emphasis is on relational abstraction of procedures rather
than structures.

Aside from LFA, excursions beyond enhancing precision in
control-flow analysis have been limited thus far to environment
analysis [7, 9, 13, 19], the analog of shape analysis [1, 17] for
higher-order programs [12]. Even though environment analysis rea-
sons about the substructural equivalence of environments trapped
inside closures, it cannot express even the simplest relations be-
tween two values, e.g., linear inequalities. Yet environment anal-
ysis plays an important supporting role for relational analysis. In
practice, it is difficult to assert and maintain quantified propo-
sitions without incorporating environment analysis [13–15] and
shape analysis [12]. Reusing an abstract address means that, in or-
der to preserve propositions quantifying over this address, all the
propositions must still hold. With an environment/shape analysis
such as anodization [12], the most recent reuse of an abstract ad-
dress lives apart from all prior uses. As a result, anodized addresses
have time to be initialized, to pass through conditional statements
and acquire invariants prior to merging with all previous instances.
With respect to this work, environment and shape analysis are
orthogonal abstractions, which can be combined via direct prod-
uct [12].

12. Conclusion
In this work, we grapple with a shortcoming of higher-order
program analysis: imprecise, non-relational abstract domains, by
proposing two reasonable, orthogonal yet complementary interpre-
tations of relational domains that are able to discover invariants in-
traprocedurally, interprocedurally, intrastructurally and interstruc-
turally in a higher-order setting.

Acknowledgments
This material is based on research sponsored by DARPA under
agreement number FA8750-12- 2-0106. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon.

References
[1] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. Analysis

of pointers and structures. In PLDI ’90: Proceedings of the ACM
SIGPLAN 1990 Conference on Programming Language Design and
Implementation, PLDI ’90, pages 296–310, 1990.

[2] P. Cousot and R. Cousot. Relational abstract interpretation of higher-
order functional programs. JTASPEFL ’91, Bordeaux. BIGRE, 74:33–
36, October 1991.

[3] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction or approx-
imation of fixpoints. In Conference Record of the Fourth ACM Sympo-
sium on Principles of Programming Languages, pages 238–252, 1977.

[4] Patrick Cousot and Radhia Cousot. Systematic design of program
analysis frameworks. In POPL ’79: Proceedings of the 6th ACM

SIGACT-SIGPLAN Symposium on Principles of Programming Lan-
guages, POPL ’79, pages 269–282, 1979.

[5] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear
restraints among variables of a program. In Proceedings of the 5th
ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, POPL ’78, pages 84–96, 1978.

[6] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen.
The essence of compiling with continuations. In PLDI ’93: Proceed-
ings of the ACM SIGPLAN 1993 Conference on Programming Lan-
guage Design and Implementation, pages 237–247, June 1993.

[7] Suresh Jagannathan, Peter Thiemann, Stephen Weeks, and Andrew
Wright. Single and loving it: must-alias analysis for higher-order
languages. In POPL ’98: Proceedings of the 25th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
’98, pages 329–341, 1998.

[8] Neil D. Jones. Flow analysis of lambda expressions (preliminary ver-
sion). In Proceedings of the 8th Colloquium on Automata, Languages
and Programming, pages 114–128, 1981.

[9] Matthew Might. Environment Analysis of Higher-Order Languages.
PhD thesis, Georgia Institute of Technology, June 2007.

[10] Matthew Might. Logic-flow analysis of higher-order programs. In
POPL ’07: Proceedings of the 34th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 185–
198, 2007.

[11] Matthew Might. Abstract interpreters for free. In SAS 2010: Proceed-
ings of the 17th Static Analysis Symposium, SAS’10, pages 407–421,
2010.

[12] Matthew Might. Shape analysis in the absence of pointers and struc-
ture. In VMCAI 2010: International Conference on Verification,
Model-Checking and Abstract Interpretation, pages 263–278, January
2010.

[13] Matthew Might and Olin Shivers. Environment analysis via Delta-
CFA. In POPL ’06: Conference Record of the 33rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages
127–140, 2006.

[14] Matthew Might and Olin Shivers. Improving flow analyses via
Gamma-CFA: Abstract garbage collection and counting. In ICFP ’06:
Proceedings of the 11th ACM SIGPLAN International Conference on
Functional Programming, pages 13–25, 2006.

[15] Matthew Might and Olin Shivers. Exploiting reachability and cardi-
nality in higher-order flow analysis. Journal of Functional Program-
ming, 18(Special Double Issue 5-6):821–864, 2008.

[16] Antoine Miné. The octagon abstract domain. Higher-Order and
Symbolic Computation, 19(1):31–100–100, March 2006.

[17] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape
analysis via 3-valued logic. ACM Transactions on Programming
Languages and Systems, 24(3):217–298, May 2002.

[18] Olin Shivers. Control flow analysis in Scheme. SIGPLAN Not., 23(7):
164–174, June 1988.

[19] Olin G. Shivers. Control-Flow Analysis of Higher-Order Languages.
PhD thesis, Carnegie Mellon University, 1991.

[20] David Van Horn and Matthew Might. Abstracting abstract machines.
In ICFP ’10: Proceedings of the 15th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’10, pages 51–62,
2010.

