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Scheme For Max (S4M) is an open source project that enables embedding s7 Scheme interpreters in
the Max/MSP visual programming environment, the most widely adopted programming platform
for computer music. Of particular note is its appropriateness for flexibly and accurately scheduling
future musical events, a capability not adequately supported thus far in Max. This is accomplished
by scheduling Scheme procedures integrated with the Max scheduler, and the implementation of this
facility is discussed. In addition to scheduling, S4M enables users of Max to script Max generally in
Scheme and provides facilities for real-time dynamic code evaluation (a.k.a. “live-coding”) within
the Max environment.
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1 INTRODUCTION

Max (also known as Max/MSP) is a programming environment for creating interactive
music and multi-media programs through a visual programming language accessible to
non-programmers. Max was created to make it possible for users to go beyond the limits of
commercial music sequencing tools, creating interactive environments of arbitrary complexity
and sophistication [16]. Programs, or “patches” in the Max nomenclature, are created by
placing visual boxes representing Max objects on a canvas and connecting them visually
with “patch cords”, a paradigm similar to that of modular synthesizers and familiar to many
musicians. First created in the mid 1980’s by Miller Puckette while at IRCAM (Institut
de recherche et coordination acoustique/musique), Max is now developed and sold by the
San Francisco software company Cycling '74, and is widely used in both academic and
commercial music contexts as well as in multi-media installations. A rich library of Max
objects exists, both provided with Max and available as open-source extensions, enabling
users to rapidly create interactive systems with gestural input from physical sources such as
on screen widgets, physical electronic instruments, and custom hardware communicating
over serial networks.

One powerful feature of Max is its ability to be programmed while the engine is playing
music. Patches can be altered without necessarily interrupting patch activity (depending
on the design of the program), and this can even be performed live, an activity known as
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Fig. 1. A Max patch with a keyboard value transposed by a dial and sent to MIDI output.

“live-coding”, which has emerged since the early 2000’s as its own musical sub-culture of live
programming performances with tools such as Max, SuperCollider, Csound, and others [10].
This approach to music making overlaps with the related discipline of algorithmic music, in
which programmatic algorithms are used not just for affecting musical parameters such as
volume, pitch, and timbre, but also for the generation of musical content such as melodies
and rhythms.

In both the fields of live-coding and algorithmic music, the ability for the performer and
composer to schedule events in the future with high temporal accuracy is of major benefit.
A common scenario is that a solo performer or duo is composing electronic music on the
fly for a large number of voices — more than the performers have hands. Thus they create
abstractions of musical content, and request from the system that potentially many of these
will begin together at some point in the future. For example, a performer may program
a drum groove that has a large number of interacting lines, but wish the groove to only
begin playing, and thus be audible, at the beginning of the next 16-bar musical boundary.
While this is possible in the Max visual patching language, it is cumbersome and thus the
implementation is not optimal for live-coding or algorithmic music where the speed with
which the user can accomplish this is an important consideration. In a live electronic music
context, one of the primary challenges for the perfomers is the design of a working system
that enables them to create new material on stage (making the performances engaging and
improvisatory), but in a way that enables them to work fast enough not to bore an audience!

In addition to the Max visual patching language, Max can be programmed by creating
new Max objects (“externals” in the Max nomenclature) in C or C++ using the Max SDK
and API, and can also be programmed in text-based languages through regular Max objects
that themselves provide embedded language interpreters. Max provides one such interpreter
in the js object, which embeds a JavaScript interpreter, and others contributed by third
parties exist for languages such as for Lua, Python, and Ruby.

Scheme For Max (a.k.a. S4M) is an open-source external developed by the author that
embeds the s7 Scheme interpreter, a Scheme dialect created by Bill Schottstaedt at the
Center for Computer Research in Music and Acoustics (CCRMA) at Stanford University.
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Originally developed from TinyScheme, s7 is a Scheme dialect designed for use in computer
music platforms and is used in various music programs such as the Snd editor and the
Common Music algorithmic composition platform [11]. Similar in functionality to the built-in
Jjs object, the s4m object enables the user to program Max in s7 Scheme, and provides
Scheme functions to interact with the Max engine and environment through a foreign
function interface implemented in C using the Max C SDK and API.

The author believes that S4M extends Max in a way that is of significant value to the
algorithmic musician and live-coding performer, as well as more generally to the broader
Max community. The ability to update a running Scheme program during playback is a
major benefit and is a capability that has been, while technically possible, impractical with
existing solutions such as JavaScript. Additionally, the syntax of Scheme bears a convenient
similarity to Max message syntax, and thus one can easily use Max visual widgets and
messages to generate small Scheme programs in the patcher. Potentially the most interesting
benefit is the ease with which the user can create and schedule functions for evaluation in
the future, with input into these functions coming from Max patching widgets, and flexible
control over the current and future evaluation context of the functions and variables used.
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Fig. 2. Demonstration of real-time algorithmic music by the author, in which S4M is used to control a
Eurorack modular synthesizer. https://youtu.be/pg7B8h4yHkU & https://youtu.be/rcLWTjN4qBI

This paper provides an overview of the Max platform and the problem of musical scheduling
in computer music, as well as the existing Max solutions to this problem, and a discussion
of the limitations of these solutions. It then introduces Scheme For Max and examines how
the use of Scheme overcomes these limitations, and provides details of the implementation
of scheduling in S4M, both at the Scheme and C programming levels. Finally, it concludes
with discussion of the current limitations of, and future possibilities for, Scheme For Max.
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2 BACKGROUND - PROGRAMMING MUSIC IN MAX/MSP
2.1 The Max Environment

Max is a visual programming environment for interactive multi-media, used widely in music
academia as well as in commercial music circles through Max for Live, a version of Max
embedded in the Ableton Live digital audio workstation. Max patches are created by placing
visual boxes on a canvas and connecting them graphically with “patch cords”, where a box
may be any of the Max object types installed on the user’s system. A box placed on the
patcher results in the instantiation of an object in memory from a prototypical class for
the object, with text fields typed in the visual patching box used as constructor arguments.
Thus a Max patch consists of a collection of instantiated objects that send messages to each
other in a directed graph, producing a data-flow execution model whereby a message from a
source object triggers execution in one or more receiving objects, who may in turn send on
messages to other similarly connected objects.

Patch activity, in the form of messages moving through the graph, can be initiated by
various forms of real-time input, such as keyboard and mouse events, connected electronic
instruments, and networking events, as well as by scheduled events through Max objects such
as the metronome, which sends out messages at regular time intervals. Messages are stored
internally as lists of Max “atoms”, which may be symbols, integers, or floating point numbers
[9]. There also exists a Max object for visually displaying and altering messages called the
message-box, which allows messages to be typed directly in the object in the visual patcher,
and then sent by clicking the box. Execution follows a depth-first and right-to-left order,
enabling the programmer to deterministically control the execution flow with the visual
layout of the patch cords. (i.e., A source object sending messages out to multiple receiving
sub-graphs results in the right-hand message path completing execution to the bottom before
moving left, rather than spawning two concurrent threads of execution.) When patching,
messages can be inspected by sending them to a print object (which prints to the Max
console), to a message-box object (which will update its visual display of the message) or
through a built-in visual debugger using a feature Max calls “probing”.

In addition to this event-based message execution model, also called “control messages”,
Max supports a stream-based digital audio execution model, originally provided separately
as a product called “MSP”, but now included as part of the single Max product. MSP
activity normally runs in a separate thread from the event/message Max operations, and
uses a separate class of objects that pass constant streams of digital audio to each other
through differently colored patch cords (though MSP objects may additionally receive control
messages for controlling parameters). As S4M executes only at the event/message level and
does not implement DSP operations, MSP is not discussed further here.

2.2 Max Message and Object Implementation

Internally, Max messages are data entities consisting of a symbol that acts as a Smalltalk-
style message selector and an optional array of Max atoms. Each atom entity contains a
member for the atom type and another for its value, where the type may be any of int,
float, or symbol. Note that while the message selector symbol is always present at the C
level, in the visual patcher the selector may be implicit and hidden from the user. (i.e., the
message originating from a message box that appears to contain only an integer will actually
consist of the selector “int” followed by an atom storing the numerical value.) The symbol
“bang” is a special symbol that can be used for a one-element message that essentially means
“run”, and the act of triggering execution by sending a bang message from the bang object is
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called “banging” in the nomenclature. (Note that there are both messages and objects called
“bang”; the bang object is an object that sends a bang message on receipt of any message.)
Taken together, this means that in Max there are five kinds of messages: bang, symbol,
int, float, and list. [9] (The bang message is technically a symbol message of “bang”, but
this is essentially treated as a type of its own in the nomenclature.)

Activity in an object (represented visually by a single visual box in the patch) is triggered
by sending the object a Max message, most commonly from an object connected to it
through a patch cord running to an “inlet” of the object. In order for the receiving object to
do anything, it must be sent a message with a message selector for which it has a bound
method, a situation referred to in the nomenclature as “responding to the message”. Most
objects have a principal activity that typically ends with outputting the result of their
calculation, and this is often triggered by sending the object a single bang message or
by sending a value to their first, or “hot”, inlet. In addition, they may respond to other
messages to change internal state data or configuration — for example the “set” message is
commonly implemented to update internal state without outputting any result. The end
result of object methods run on receipt of a message falls broadly into three (non-exclusive)
categories: the object may update some internal state, it may send a message or messages
out of its outlets, and it may cause a side effect in the broader Max environment, such as
printing to the console or updating a global data element such as an audio buffer.

As an example, in the patcher screenshot in figure 3 we see a message-box object that
will update its state (and visual display) with the symbols “hello” and “world” when sent
the message set hello world. Near it is a circular bang object, which when clicked will
send the message-box the bang message, causing it to output the message list hello
world. This message will be received by the zl.len object, which counts the number of
elements in any lists it receives, immediately outputting the count. The three columns in the
screen-shot show the patch as it is prior to any clicks, as it is after clicking message-box 1,
and as it is after clicking both message-box 1 and the bang.

message-box 1 message-box 1 message-box 1

set hello world set hello world

set hello world

a bang

/ message-box 2

hello world hello world

zl.len zl.len zl.len

o o

.

Fig. 3. Message flow at three stages

Objects are not limited to interacting with other objects through messages passing into
inlets and out of outlets. A C API exists that enables objects to query and control various
engine components (e.g., the transport mechanism), and it is also possible for objects to
send messages to other objects directly or through the scheduler queues, without the sending
and receiving objects necessarily being connected visually in the patcher. Fundamentally
however, the same mechanism is used — when an object calls a method on another object at
the C level, this is still done by creating a data structure of a message selector and optional
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atom arguments, and then sending this to the receiving object through a generic message
sending function.

As each visual box in a patcher has state that is retained between messages, we can see
that when programming the visual patcher (a.k.a. “patching”), we are in effect programming
with object instantiations rather than classes. In fact, in the Max engine, the act of creating
a new visual-box and placing it on the patcher canvas does indeed instantiate an object,
creating a fresh copy of the prototype’s data structure and adding it to a graph of other
objects. This is in contrast to computer music languages such as Csound, where the user
programs instruments with functions and the engine creates an instantiated data structure
on each note-event sent to the instrument from a score — in effect the instruments act as
object builders and note-events become objects that exist for the duration of the note played

[6].
2.3 Max Externals

While Max is a commercial, closed-source product, it includes a software development kit
for extending Max by writing a Max “external”. An external is a compiled plug-in that
defines the prototype (data structure and methods) used to create new objects in the patcher.
Externals are developed in C or C++ in an object-oriented manner, the C API using data
structures and pointers to simulate class-based programming with dynamic binding, and the
more recent C++ API using C++ classes [16]. A typical external will implement a class that
provides some object state for instantiated objects along with constructor and destructor
functions, and methods for sending and receiving Max messages through the object’s inlets
and outlets. Methods are bound dynamically to the object prototypes. The SDK and API
also provide a rich body of functions for interacting with the overall Max environment, thus
these methods may also trigger side-effects through these facilities.

As externals are compiled plug-ins, they do not need to be distributed as source-code,
and are most typically made available as binaries for Windows and macOS. Extending Max
through externals has been possible since very early versions of Max in the late 1980’s, thus
thousands of 3rd party externals now exist [7], both open and closed source, of which Scheme
For Max is one.

2.4 Lisp in Computer Music

Scheme For Max is far from the first Lisp-based computer music tool, or even the first real-
time music tool in Lisp. There is a rich history of Lisp in music, including (but not limited to)
Common Lisp Music, created by Bill Schottstaedt in the late 1980’s [15], Heinrich Taube’s
Common Music from 1991 [13], Roger Dannenberg’s Nyquist from 1997 [4], and Andrew
Sorensen’s Impromptu from 2005 (later rewritten as Extempore) [12]. Nor is Scheme For Max
unique in providing a Lisp-family extension facility to a larger music platform — the author
unknowingly programmed in Lisp in the early 1990’s while using the Cakewalk sequencer,
which came with an embedded Lisp interpreter in the form of the Cakewalk Application
Language! There also exist Lisp-family client interfaces to the open-source SuperCollider
music platform, including Overtone (Clojure), rsc3 (r6rs Scheme), and cl-collider (Common
Lisp).

However, Scheme For Max is unique in bringing a fully-fledged Scheme interpreter to
the Max environment as a first-class Max object, implemented and running identically to
any built-in object. This is significant in that Max is arguably the most widely used truly
programmable music platform, and certainly the most widely deployed through its use in
the very successful Ableton Live digital audio workstation, as Max For Live.
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In contrast with S4M, systems such as Common Lisp Music, Common Music, Nyquist,
and Extempore all run as stand-alone applications, with events originating from them either
rendered as audio internally or destined for other systems for rendering to audio. While
these systems are, like Max, also capable of receiving gestural input, they must, in essence,
“be their own boss” — they provide their own scheduler and timing clocks and act as the
principal engine from which temporal events originate. If they are to be used alongside
another temporal engine, the two must be synchronized and events sent back and forth over
network connections of some kind.

There have also been previous Max externals created to allow one to use Lisp in Max in
various ways. Brad Garton authored MaxLispJ, an external that provides a Common Lisp
interpreter (Armed Bear Common Lisp) embedded through the Java runtime that can be used
within Max via the mxj object [5]. MOZ’Lib, by Julien Vincenot, takes another approach, in
which the Max external acts as a proxy to an externally running Steel Bank Common Lisp
process, a similar approach to that used by Cycling *74 for their Node for Max object (for
Node.JS/ECMAG), thus enabling the outside process to execute long-running work without
blocking Max [14].

In contrast to these, SAM embeds a light-weight Scheme interpreter directly in a Max C
external with no intermediate or external runtime necessary. This is made possible by the
suitability of Scheme for the creation of small, portable, and self-contained interpreters. The
s7 interpreter is implemented entirely in ANSI C, is statically linked during compilation
of S4M, and operates entirely in whatever thread it is run in by the C host. This means
multiple instantiations of the interpreter are possible, and each s4m object has direct C-level
access to the Max C API through foreign function interface calls, with the results of said
calls being exactly the same as if the functions were called in C, save execution time. The
ramification of this is that S4M is unique among Max Lisp projects in being able to operate
within the native Max scheduling system, enabling highly accurate timing and retaining
deterministic control flow within a patcher. (i.e., There is no hidden networking layer with
communication to an outside process, which makes operations fundamentally asynchronous
even if this is hidden from the user visually, as is the case with Node for Max and MOZ’Lib.)
This provides the user with opportunities to use Scheme for tasks beyond what is possible
with previous options.

For example, we are in effect able to say “at a certain time, read some shared state and
update an internal engine parameter accordingly”. In the example below, a Scheme function
is scheduled that will, in 4 bars time, read a rehearsal mark from the table mark-table,
advancing the global transport to that position. As the table is a shared data object, other
Max objects (or patchers) could write to this rehearsal mark table without awareness of S4M.
(Note: this is a safe operation from Scheme code as table access is done through thread-safe
Max SDK functions that handle synchronization and locking for us.)
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output on Enter: [Jf] control-keys: Ctri-E: Output  Cirl-O: Ouput and clear

(delay-t (bbu->ticks ‘(4 0 0))
(let ({bar (table-ref 'mark-table 4)))

(lambda()
(transport-seek bar 0 0))))

é_fepend eval-string

s4m Transport Activate Click ?

tabl k-tabl Beats  Unit Tempe Bars Beats  Units

Resolution : 480 ticks/beat Rewind 0:0:0.0

Fig. 4. S4M patch that moves the transport in 4 bars time to a mark read from a table

3 RATIONALE FOR THE CHOICE OF S7 SCHEME

The design of the Max external system means that, technically, any interpreter that can
be embedded in a C host could be used. The author evaluated several during the initial
prototyping stages of development, including ECL (Embeddable Common Lisp), Gambit,
Chicken, Racket, Guile, and s7. The choice to use s7 was based on several factors, including
the ease of embedding, its license, and its use in other computer music tools (and thus its
design suitability for computer music).

The s7 interpreter is implemented in a single C file (with header file), and is statically
linked with the C code of the s4m object. Embedding is as simple as linking to the s7
library and including a single file. In this regard (ease of embedding), it is similar to Guile,
and in fact, is linguistically similar to Guile 1.8. However, while Guile is licensed with the
(somewhat reciprocal) LGPL license, s7 is liberally licensed under the BSD license. As the
creation and sale of commercially externals is part of the Max milieu, the author felt this
was more likely to result in uptake within the Max community.

Racket, Chicken, and Gambit were also potential contenders. In all three cases, the
complexity of embedding was significantly higher, and in at least one case (Chicken), thread-
safety for multiple interpreters in the same Max patch appeared problematic. In addition,
documented examples of common embedding use cases were less available than with s7.

Finally, s7 was created for computer music, and as a result is used in other computer
music environments, such as Common Music. As a result, there is a rich body of code,
especially from Common Music, that can be used or studied by users. There is also a small,
but active, online community of music programmers using s7, communicating through the
CM-dist mailing list hosted at the Stanford computer music center, CCRMA. The author
of s7, Bill Schottstaedt, has been working with Lisp and music since the 1980’s, and has
been an enthusiastic supporter of the project, providing invaluable suggestions and technical
assistance.

4 IMPLEMENTATION OF THE SCHEME FOR MAX EXTERNAL

This section provides a high-level overview of the implementation of the s4m object provided
by the Scheme For Max external.

The s7 foreign function interface enables one to define new Scheme functions in C for calling
into C from Scheme, and to call any Scheme code from C. The interpreter is instantiated
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in the s4m object’s constructor (s4m_new as per the Max naming conventions), and a
reference to it is stored in the s4m object’s data structure. Additionally, during initialization
the external creates a Scheme-side variable that holds a pointer to the instantiated s4m
object itself. Thus both C functions that are called from Scheme and C functions called in
response to Max messages have access to both the s4m Max object and its associated s7
interpreter. There is always one and only one s7 interpreter per s4m object instance, and
as s7 is thread safe, many s4m objects can be created in a Max patch, including in both
the low and high priority threads. (Max runs both a high-priority “scheduler” thread and a
low-priority “UI” thread for event/message flow. Each s4m object runs in only one of these,
chosen via an optional constructor argument, and incoming messages from the opposite
thread are deferred or promoted accordingly.)

Scheme-to-C calls are accomplished by defining a C function, and binding it to a Scheme
function name in the initialization routine. The function must take as arguments a pointer
to the s7 interpreter instance and an s7_pointer that is a reference to a Scheme list of the
arguments used in the Scheme call. In the body of the function, C functions from the s7
API are used to get individual arguments from this list, the work is done for the function
(which may include additional calls back into Scheme or Max API calls), and finally, an
s7_pointer is returned, which becomes the return value of the function in Scheme.

C-to-Scheme calls are handled similarly: the C function (normally a method of the s4m
object that runs in response to a Max message) uses the s4m object’s reference to its s7
interpreter and the s7 API to build Scheme argument lists and call into Scheme, getting
back an s7_pointer that is then converted to one or more Max atoms. In both cases, helper
functions that convert Max atoms to s7 objects and vice versa are used, implemented as
max_atom_to_s7_obj and s7_obj_to_max_atom respectfully. The code example below
shows sample functions for both directions.

// a C function that is called from Scheme as (post . args)
// it logs to the Maz console through the Max API "post” function
static s7_pointer s7_post(s7_-scheme xs7, s7_pointer args) {
// all s7 functions have this form, args is a list , s7-car(args) is the first arg, etc
char xmsg = s7_string( s7_car (args) );
post ("sdm: %s” , msg);
return s7_nil(s7);

}

// a C function that is called from Maz (by a clock) and calls into Scheme
void s4m_clock_callback (void xarg){
// wuse the clock info structure to get the delayed function handle
t-s4dm_clock_callback xccb = (t-s4m_clock_callback =) arg;
t-s4dm xx = &(ccb—>o0bj);
t_.symbol handle = xccb—>handle;

// create an argument list for calling into Scheme

// = is the s4m object, z—>s7 the interpreter reference

s7_pointer *xs7_args = s7_-nil(x—>s7);

s7_args = sT7_cons(x—>s7, s7_make_symbol(x—>s7, handle.s_.name), s7_args);

// call into Scheme
s4m_s7_call(x, s7_-name_to_value(x—>s7, ”s4m—execute—callback”), s7_args);

// ... clean up trimmed...

When an s4m object is created in the patcher, it can optionally be given the filename of
a Scheme file as an argument. If this is given, the file is found by searching the Max search
path, and is then loaded on instantiation using the standard Scheme load function. Editing
this argument in the patcher box always resets the interpreter, as it forces Max to recreate
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the s4m object entirely. Additionally, the reset message can be sent to the s4m object,
and this results in the interpreter being destroyed and recreated, reloading the argument
file, without destroying the Max object instantiation.

To evaluate Scheme code dynamically from the Max patcher, two input facilities are
available. If an s4m object receives a Max message consisting of the message selector eval-
string and a single symbol atom, this is taken as a request to evaluate the symbol argument
as Scheme code. Thus in Max, the user can build messages with Scheme syntax or receive
code as strings over the network, and by using Max objects to convert this into one single
quoted symbol, prepended with the selector symbol eval-string, the code can be evaluated
dynamically. This enables users to add run-time code that is possibly long (i.e., too long to
conveniently type into a Max message-box) by sending it from a text editor or command
line utility to Max over the local network. In figure 4, the left-hand side shows code being
sent from a text object, prepared as an eval-string message, and sent to the s4m object.
A udpreceive object also receives code as strings on network port 7777. (The author uses a
Python script triggered from a macro to send blocks of Scheme code from the Vim editor
over port 7777.)

The second facility for dynamic code evaluation in S4M is more unusual. In a Max external,
there exists a binding option to catch any previously uncaught messages, so that a message
with an unrecognized selector can be handled by a generic dispatching method. In S4M, this
is used to catch any message that is not already reserved, with any additional arguments
passed in as a Max list of atoms. The s4m object interprets the message to mean “evaluate
this selector plus its additional atoms as if it is a Scheme list enclosed by parentheses”.
Because both Max and Scheme uses white-space as separators and very little in the way
of diacritical syntax, this enables a wide variety of simple Scheme calls to be made with
little ceremony. The individual atoms of the Max message are converted to Scheme tokens,
assembled into a list, and this list is evaluated. While seemingly simple, this facility is of
significant utility to the Max programmer, as combined with the Max message interpolation
facility, it enables the user to very easily assemble Max widgets that trigger Scheme functions.
Most anything that can be expressed in a single s-expression without inner nesting can be
used. In figure 5, we see a number-box outputting to a message-box using Max’s variable
interpolation (the $1). Clicking the bang above the number-box or changing the number
in the box will result in a message of set-volume X being sent to the s4m object, which
will then call into Scheme with the code (set-volume X).

. Sending full Scheme code Receive code over Shortcut, evals as
network port 7777 (set-volume x)
(define (set-volume v)

(if (and (> v 0.0) (< v 1.0)) udpreceive 7777

i}

set! volume v,
( )] prepend eval-string
l

2
LI‘ set-volume $1
]

|

\

Fig. 5. S4M patch with 3 ways of sending Scheme code to the interpreter
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In addition to both of these, the s4m object implements a read message, where sending
read {filename} to the object will result in the full filename being found on the Max search
path and used in a call to the Scheme load function, without resetting the s7 interpreter.

Taking the above together, we see that users have a wide variety of code input options:
they can change the main file in the s4m box if they want a rebooted interpreter, they can
send read messages if they want to load files without losing interpreter state, and they can
send code itself either as strings or as Scheme one-liners implemented as Max messages. The
result is that it is straightforward for users to keep parts of their Scheme program active
and running while working on other parts that are being redefined on the fly (perhaps while
music plays!), a workflow that is very convenient to algorithmic musicians, but impractical
with existing Max options. Of particular note, this enables the user to conveniently create
new functions and schedule them for future evaluation, as discussed in the next section.

5 EVENT SCHEDULING IN COMPUTER MUSIC AND MAX

Music is fundamentally a temporal art form — there may be music with static pitch or static
amplitude, but absent rhythm, there is no music. Thus a core problem in computer music
programming environments is that of providing a flexible means of triggering events in time.
Further, in platforms intended to support both live and algorithmic musical interaction, a
viable solution must enable the performer to interact with scheduled events easily, both
programmatically and gesturally.

One of the major advantages of Max compared to other computer music platforms is
the ease with which the user can create interactive environments in which the performer’s
actions change musical parameters in complex ways, enabling musically rich performances. It
is, for example, trivial to add GUI elements to change musical parameters, and only slightly
less trivial to add handlers for MIDI input, so that users can connect to their programs
physical devices such as piano-style keyboards, and mixing board knobs, faders, and buttons.

For performers and composers exploring the intersections of live performance and algo-
rithmic composition, one is ideally able to use gestural inputs not just to affect what is
happening now (as with a traditional musical instrument), but also what will happen in the
future. For example, a performer may have two physical dials, and may wish to schedule
an event in the future that will use parameters derived from these dials, but may wish one
parameter to be used as the dial is now (at the time of event dispatch) and the other to be
used as the performer will have the dial at the scheduled time. Further, the absolute time of
the event may not even be known at the time of scheduling, as could be the case if the event
time was specified in musical terms (i.e., on the down-beat of the next 8 bar section) and
the tempo might be changed prior to the scheduled (musical) time.

The author proposes that this problem is one not well solved in the Max environment prior
to Scheme For Max. Max does provide facilities to delay Max messages by some amount
of time. In the context of visual patcher programming, users can schedule a Max message
(number, symbol, or list of both) for future processing by sending it through a pipe object.
The amount of time by which it is delayed is specified as an argument to the pipe object,
and can be expressed in milliseconds or in a tempo relative format with the actual time
determined by the Max master transport tempo. The pipe object’s delay time can also be
set dynamically by sending a numerical message to the right inlet. Any messages sent to the
left inlet will be passed out the outlet(s) after the specified time.

While moving events into the future with the pipe object is simple to program in the
patcher and functions adequately, it has several limitations. The most immediately noticeable
is that it also splits list messages into individual elements, sending them out individual
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outlets. If the user wishes to delay a complex event with many parameters, something
easily expressed in list format, it requires the user to specify how many atoms will be in an
incoming list message in advance and to reassemble the message manually. If the length of
the list is unknown (i.e., the event uses an arbitrary number of parameters), the solution is
more complex and requires an exterior storage mechanism to be used to allow the outgoing
message to re-fetch the original list from another object after delay. Using the pipe object
for delaying complex events is thus cumbersome.

A larger problem is that of how to capture gestural values for use in the delayed events.
Max’s visual patching language is fundamentally modelled similarly to a modular synthesizer
— there is one instance in memory of each visual object, and messages can only pass through
them one at a time. Creating visual programs where execution of delayed events will trigger
cascades of messages through objects that are also being used in the interim becomes
onerously complex and there exists no straightforward facility to express “make a new
container for this variable as it is now so that we can fetch it later”. A naive solution would
be to use a visual patcher object to store the variable’s state at trigger time for use later,
however this only works if there is only one scheduled event — adding more scheduled events
requires adding an additional storage objects per concurrently scheduled event, and as each
object in the visual patcher represents an object instantiation rather than a class, this rapidly
becomes baroque. This “programming-with-instances” paradigm is very convenient when we
want to ensure there is only ever one instance of a given function, such as in emulation of a
hardware synthesizer, where each oscillator represents one “always-on” physical device that
is playing regardless of whether one can hear it. However, it is difficult in a polyphonic time
context such as the creation and eventual playback of some arbitrary number of delayed
events.

List to delay EIFEEELNA:] Delay time
|

ipe00000000500
R

pack00000000

| —

Fig. 6. Delaying a list message with the pipe object requires reassembling the list with the pack object

It should also be mentioned that there exists within Max a facility for creating new
instances of Max sub-patches on demand, designed with the express purpose of overcoming
this barrier. One can use the poly object to create polyphonic patches. However, this involves
complex patching, so we will not examine this further here, save to comment that this again
becomes cumbersome when dealing with a potentially large and unknown number of events,
each with arbitrary numbers of parameters.

In the C API however, Max does provide a highly accurate facility for delaying the
execution of a C callback function, through the Max clock API. Scheme for Max builds on
this to provide an accurate, flexible, and high-level means to schedule future events, without
the problems described.
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6 COMPARISON WITH THE MAX JAVASCRIPT OBJECT

We can see that the visual patching language of Max is not well suited to implementing our
use case of a performer wanting to schedule large numbers of events with arbitrary numbers
of parameters and gestural inputs meant variously for present and future use. However, Max
does provide an alternative programming solution through its js object, which embeds a
JavaScript (ECMAD) interpreter in the Max environment. The user is able to load JavaScript
code from a file (provided as an argument to the object), and this code can interact with the
Max environment and with object inlets and outlets, similar to how one can do so in C code
in a Max external. This does allow one to create functions and variables, and does have a
facility for delayed execution through the JavaScript Task object. Thus technically it could
be used to solve our use case. In many respects the js object is functionally similar to the
s4m object, and in fact, the desire to work with Max this way, but without the limitations
of the Max JavaScript implementation, was the reason for the development of S4M.

The js object in Max is not an ideal solution to our problem for several reasons. The
most serious is that it is limited to running only in the Max low-priority GUI thread [1]. As
this thread is also used for Max file i/o and graphic redrawing, the result is that latency
is potentially high and indeterminate, meaning musical timing accuracy is unpredictable
and often poor. The human ear is very sensitive to time, with delays of tens of milliseconds
being enough to sound like errors in playback of highly rhythmic music. This means that
it takes little other activity in the GUI thread to delay our scheduled events enough to be
audibly incorrect. For some purposes, this is acceptable, but for the creation of accurate
musical sequencers or algorithmic music engines, the js object is unreliable.

Secondly, the js object provides no convenient facilities for loading new code during
playback such as was previously described for S4M. The object reads in a single source file
at instantiation time. One could technically add dynamic code evaluation by wrapping code
to be evaluated in strings and passing this message to a JavaScript function that uses the
JavaScript eval function, much as S4M does with the eval-string message. However, this
pattern is not common and well-supported in the JavaScript milieu the way it is in Lisp
languages, as it poses a serious security risk in a web development context, which is the use
case driving JavaScript linguistic evolution, literature, and tooling.

Finally, the js object gives us JavaScript’s implementation of anonymous functions and
closures, which while usable, are verbose in terms of syntax, and require diacritical syntax
that is not easily used in Max messages. When compared to the syntax of Scheme, JavaScript
is thus impractical for generating code in Max messages.

This is of particular significance to algorithmic performers, for example in the live-coding
scene, who might want to not just schedule a pre-written function, but create a new function
and schedule it while a piece plays.

7 SCHEDULING EVENTS IN SCHEME FOR MAX

Given the above, we can see that the problem of elegantly implementing a delayed event
system that can differentiate between current and future values for variables derived from
real-time input gestures is well suited to solutions using Scheme. Scheme is notable for the
conciseness with which one can create an anonymous function and store a reference to this
function (taking along its environment) in some data store to be retrieved at an arbitrary
point in time. Further, it is straightforward to differentiate in the function between variables
that should be used with their value as they are at function definition time versus as they
are at eventual evaluation time. The underlying host system is required only to implement
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the ability to execute a callback at some time in the future, so long as the callback has a
means to retrieve some reference to the function stored. Scheme For Max brings this facility
to the Max environment.

Output on Enter: . Control-Keys: Ctrl-E: Output

(delay 5000
(let ((dial-1-captured dial-1))
(lambda ()
(out 0 (list 'play 99 dial-1-captured dial-2)))))

prepend eval-string

set! dial-1 $1 set! dial-2 $1

s4m Uses value as it Uses value as it

;/ﬁ is at trigger time is at delayed time
play 99 23 68

Fig. 7. Delaying a mixed list message, with dial values used with present and future values

7.1 Clock Implementation in Max

To discuss the implementation of scheduled functions in S4M, we must first examine briefly
the implementation of Max externals in C and the aforementioned facilities for delaying
functions.
At a high level, a Max external must implement the following:
A data structure to hold state used by the object
A class-building function used to create the class in C
An instance constructor function called when objects are added to a patch
Any methods that will be bound to messages as event handlers

A sample of code for a minimal external is shown below, for an object called mynum.
The object holds an integer as state, updates the integer on receipt of an int message, and
posts the value to the console on receipt of a bang message.

// data structure of instance fields for our class

typedef struct _mynum {
t_-object obj; // obligatory member for the mynum instance
long value; // state wvariable for the integer

} t_mynum;

// global pointer to our class definition that is setup in ext_-main ()
static t_-class xmynum_class;

// ext_-main, the obligatory setup function that builds the mynum class
void ext_main (void =r){
t-class =xcj;
¢ = class_new ("mynum” , (method)mynum_new, (method)NULL, sizeof(t-mynum), OL, 0);
// bind handlers for the messages we want to be able to receive
class_addmethod (¢, (method)mynum_int, ”int”, ALONG, 0);
class_addmethod (¢, (method)mynum_bang, ”bang”, NULL, 0);
class_register (CLASS.BOX, c¢);
mynum-class = c¢;

}

// constructor for our object
// the wvalue returned by the below gets stored in the obj field of our t-mynum struct
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void smynum_new (){
»

// pointers to the object defined are traditionally called 7z
t-mynum xx = (t-mynum x*)object_-alloc(mynum_class);

x—>value = 0;

return x;

}

// a method handler for int messages that updates the internal state
void mynum_int (t_-mynum =*x, long n){
x—>value = n;

}

// a method handler for bang messages, post the internal int to console
void mynum_bang(t-mynum *x){
post (" value_is -%ld” ,x—>value);

}

We can see that the pattern for adding functionality to our class is to add state variables
to the t_mynum structure, and add methods as functions expecting a pointer to our object
as the first argument, traditionally named “x”. In the example above, a bang message
causes our object to run, with the side effect of posting the stored value to the console. A
more realistic example would likely output the stored value, but this adds more code and is
not necessary for our demonstration of scheduling.

Let us imagine instead that the bang message should delay the activity of posting to
the console by 1000 ms. We can use the Max clock facility for high-accuracy delay, as it
accepts floats for the ms time value. (Note that the actual delay time will be offset to the
nearest signal vector boundary, determined by the users “Signal Vector Size” audio setting,
but subsequent clock calls adjust for this, maintaining long-term temporal accuracy. If one
needs single-sample accuracy, the solution is to simply set the signal vector to a size of 1.)

We will create a clock object, which takes as arguments a void pointer and a function
reference, with the void pointer normally used to hold a reference to our instantiated object
(x). The standard method for doing this in Max (taken from the SDK documentation) is to
add a clock object to our class’s data structure, and to add the act of starting the clock to
the bang handler.

// typical Maz clock wuse

typedef struct _myint {

t_object obj; // member for the actual instance
long value; // state wariable for the integer
void *clock ; // will hold clock pointer

} t-myint;

// update the constructor to make a clock
void *myint_new (){

t-myint *x = (t-myint x)object_alloc(myint_class);
x—>value = 0;

// create a clock bound to the myint_callback method
x—>clock = clock_new (x, (method)myint_callback);

return x;

}

// update the bang handler to start the clock
void myint_bang (t-myint =x){
clock_fdelay (x—>clock , 1000);

}

// the callback that will be triggered by the clock
void myint_callback (t_-myint x){
post (”in_the_future ,_the_value_is _%ld” ,x—>value);

}
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From the above we can see that, while accurate, the clock functionality is limited — the
callback must be a single-arity function expecting a pointer, and this is normally a pointer
to the object.

7.2 Implementation in Scheme For Max

Scheme For Max builds on the clock facility provided by the Max API to allow scheduling
Scheme functions. The delayed functions are limited to zero-arity signatures, but as creation
of lambda functions in Scheme is trivial, this is of little practical significance to user. To the
user of S4M, scheduling the execution of a function is simple:

schedule a function for 1000 ms in the future
; it will send the int 99 out owutlet 0 of the s4m object
(delay 1000 (lambda()(out 0 99)))

In addition to scheduling the function, delay also returns a unique symbolic handle
representing the scheduled instance, and this can be used to cancel the execution of the

scheduled function.

delay and store the handle
(define handle
(delay 1000 (lambda()(out 0 99))))

; cancel it
(cancel—delay handle)

The Scheme implementation of this is straightforward:

e The delay function (in Scheme) creates a unique symbolic handle, and stores the
function passed to it in a hash-table, keyed by this handle.

e It then calls s4m-schedule-delay, which is implemented in C and takes as arguments
the delay time and the symbolic handle. It will handle clock creation.

e When the clock callback runs after the time has elapsed, it calls (from C) the Scheme
function s4dm-execute-callback, which uses the handle received as an argument to
retrieve the delayed function from the Scheme hash-table and call it.

Cancelling a delay function consists of merely replacing the callback registered in the
hash-table with the value #false, letting the clock fire harmlessly. The s7 Scheme code for
this is shown below. It uses an s7’s gensym function to create a symbolic handle that is
guaranteed to be unique to this instance of the interpreter.

; registry of delayed functions, by handle
(define s4m-—callback—registry (hash—table))

; fumction to register a callback by a handle and return handle
(define (s4m-—register—callback cb—function)
(let ((key (gensym)))
(set! (s4m-—callback—registry key) cb—function)
key))

; fetch a callback from the registry
(define (s4m-—get—callback key)
(let ((cb—function (s4m-—callback—registry key)))
cb—function))

internal function to get a callback from the registry and run it
; this gets called from C code when the Max clock fires
(define (s4m—execute—callback key)
; get the func, note that this might return false if was cancelled
(let ((cb—fun (s4m—get—callback key)))
; de—register the handle
(set! (s4m—callback—registry key) #f)
; if callback retrieval got false, return null, else execute
(if (eq? #f cb—fun)
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"0
; call our cb function, catching any errors here and posting
(catch #t
(lambda () (cb—fun)) (lambda err—args (post "ERROR:” err—args))))))

; public function to delay a function by time in ms (int or float)
; returns the gensym callback key, which can be wused to cancel it
(define (delay delay—time fun)
; register the callback and return the handle
(let ((cb—handle (s4m-—register—callback fun)))
; call the C FFI and return the handle
(s4m—schedule—delay delay—time cb—handle)
cb—handle))

The functions prefixed with s4m- are internal; the S4M user need only understand how

to call the delay function.

The implementation in C is more involved to work around the signature limitations of

17

the clock facilities in Max. When the s4m-schedule-delay function is run, receiving the

symbolic handle and delay time as arguments, the following occurs:

e A t_s4m _clock_callback data structure is dynamically allocated and used to store a
reference to the s4m object and to the symbolic handle passed from Scheme.

e A Max clock is created, passing in a void pointer to a clock callback structure and

binding the clock to a generic clock callback function in C. The clock’s timer is started.

e The clock callback struct is also stored in a C hash-table (using Max’s hashtab
implementation), keyed by the handle, so that cancellation or object deletion can use

this to find all clocks.

e When the generic clock callback function runs (time has elapsed), it uses the pointer
argument to get the delay handle and the instantiated s4m object, through which it

can also get the s7 interpreter pointer.

e The s7 interpreter and handle are then used to call the Scheme function s4m-execute-

callback, which will run our delayed Scheme function as previously explained.
e The generic C callback then removes the clock reference from the C hash-table, deletes

the clock, and frees the memory allocated for the callback struct.

Additionally, there exists clean up functionality triggered on a reset message or s4m
object destruction which fetches from the hash-table all outstanding clocks, cancels them,
and frees the memory allocated. This is not shown as it does not materially change the

process used.

// the struct for the s4m object, with most elements removed
typedef struct _s4m {
t_-object obj;
// pointer to the s7 interpreter (initialization of which is mnot shown)
s7_scheme =*s7;
// a Mazxz hash table for storing clocks (for reset clean—up)
t-hashtab =xclocks;
} t-s4m;

// the clock callback struct
typedef struct _s4m_clock_callback {
t_s4m obj;
t-symbol =xhandle;
} t-sd4m_clock_callback;

// schedule delay FFI definition , called from Scheme as sim—schedule—delay
static s7_pointer s7_schedule_delay (s7_-scheme *s7, s7_pointer args){

// as this is called from Scheme, we must find z by fetching it

// from the Scheme variable set in initialization

t_sdm *x = get_max_obj(s7);
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// get the arguments we need (time and handle) from the s7 args list
// that represents the arguments passed to sim—schedule—delay in Scheme
// first arg is float of time in ms
double delay_time = s7_real( s7_car(args) );
// second arg is the symbolic handle
char *xcb_handle_str;
s7_pointer *s7_cb_handle = s7_cadr(args);
cb_handle_str = s7_symbol_.name(s7_cb_handle);
// allocate memory for our clock_-callback struct and populate
// NB: this gets cleaned up by the receiver in the clock callback above
t-s4dm_clock_callback *clock_cb_info =
(t-s4m_clock_callback #)sysmem_newptr(sizeof(t_s4dm_clock_callback));
clock_cb_info-—>o0bj = *x;
clock_cb_info—>handle = gensym(cb_handle_str);
// make a clock, setting our callback info struct as the owner, as a void pointer
// when the callback method fires , it will retrieve this pointer as an arg
// and use it to get the handle for calling into scheme
void xclock = clock_new ( (void x)clock_cb_info , (method)s4m_clock_callback);
// store the clock ref in the s{m clocks hashtab (used to get at them for reset cancelling)
hashtab_store (x—>clocks , gensym(cb_handle_str), clock);
// schedule it , this is what actually kicks off the timer
clock_fdelay (clock, delay_-time);
// return the handle to the Scheme caller
return s7_make_symbol(s7, cb_handle_str);
¥

// the generic clock callback , this fires after being scheduled with clock_fdelay

// it gets access to the handle and s4m obj through the clock_callback struct
// this is the C callback that runs for every delayed Scheme function
void s4m_clock-callback (void xarg){

t_s4m_clock_callback *ccb = (t_s4m_clock_callback =) arg;

t-sdm *x = &(ccb—>o0bj);

t-symbol handle = xccb—>handle;

// call into Scheme with the handle, where Scheme will call the registered
// we must build a Scheme list through the FFI to use as the arguments
sT_pointer xsT7_args = s7_nil(x—>s7);

sT_args = sT7_cons (x—>s7, s7-make_symbol(x—>s7, handle.s_name), s7_args);

// call the Scheme s{m—ezecute—callback function
// s4m_s7_call is a simple wrapper around s7’s s7_call with error handling
sdm_s7_call(x, s7_-name_to_value(x—>s7, ”"sdm—execute—callback”), s7_args);

// remove the clock(s) from the clock registry and free the cb struct
hashtab._delete (x—>clocks , &handle);

// free the memory for the clock callback struct

sysmem_freeptr (arg);

}

// clean up methods for s{m reset and delete not shown

8 LIMITATIONS AND FUTURE IMPROVEMENTS

delayed function

and

logging

The scheduling system describe does have several limitations worth noting. The s7 Scheme
implementation includes a tracing garbage collector that must run occasionally, pausing
other processing [8]. The garbage collector can, however, be paused and run on demand.
Tests on the author’s system, with the garbage collector forced to run every 100 ms to
prevent significant build up, showed the garbage collection taking an average of 1 to 2
ms per pass when run in a substantial application (a 16 track sequencer written entirely
in S4M with the computer also generating audio for the tracks with commercial software
synthesizers). The audio rendered was recorded and examined in a digital audio workstation
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to check for timing discrepancies. The results of these preliminary tests were that timing
was unaffected by the garbage collector so long as Max was configured with a large enough
output buffer to allow the collector to run within the latency period of this buffer. Using
Max with an output buffer of 256 samples produces an output latency of approximately 6-8
ms (depending on the Max signal vector as well), which was large enough for the collector
to run without issue, but is low enough to be acceptable for real-time performance. With
software synthesis loads at closer to the maximum possible on the author’s computer, an
output buffer of 512 samples (approx. 11 ms output latency) was necessary to prevent any
timing errors. This is encouraging as these buffer sizes are not atypical for commercial music
production on digital audio workstations and are widely considered as being in acceptable
ranges for real-time music systems [3].

In addition to output latency, there is the factor of internal latency. Max, like many
computer music programming environments, generates audio in vectors of samples, with each
vector generated from one processing pass, and (normally) control rate passes conducted
also a maximum of once per audio vector pass [9]. The size of this signal vector thus has
a large effect on performance, with larger vectors requiring significantly less CPU use. As
audio rendering of note onsets originating from control messages (the normal scenario) must
thus be aligned with signal vector boundaries, this produces delays of note onsets by up to
the time period of one vector, a phenomenon known as “timing jitter” in the nomenclature.
However, the more recent scheduling facilities in Max, including the clock facilities used
by S4M, are implemented to compensate for this jitter, maintaining long-term temporal
accuracy despite note onset delays. The mechanism by which this is done is unfortunately
not publicly documented or available in open-source code, but one can assume that it is
some variant of the common pattern whereby scheduled events are aware of when they are
supposed to be running (“logical-time”), and if they in turn schedule subsequent events, the
time for these subsequent events will be shifted to compensate for the jitter, based on the
logical time of the scheduling event, rather than its actual (post-jitter) actual clock time [2].
The author also conducted personal tests of this compensation, comparing both high and
low signal vector sizes to produce variable delays in note onsets, and it was determined that
so long as the overall output latency is again large enough to allow the GC to run in time,
self-scheduling events in a long piece do stay accurate in that jitter does not accumulate
over the piece (note onsets stay accurate to within the delay of one signal vector of samples,
regardless of the length of the piece of music).

These tests demonstrated that Scheme For Max is usable as a highly accurate timing
source for processing-intensive music production so long as some reasonable latency is used,
but that at low latencies the garbage collector will interfere with timing by generating
audio under-runs. Improving or replacing the s7 garbage collection implementation for lower
latency use is a potential area for future work.

A second limitation is that S4M does not implement DSP calculations at this time,
running only in the Max event/message thread. Max does have an audio configuration
option whereby the event thread and DSP thread are shared in a round-robin execution
pattern. It is worth exploring whether the Scheme interpreter could be run productively
in the DSP loop in this configuration. While it is unlikely that S4M will be suitable for
processing-intensive audio synthesis (requiring filling the whole vector per pass), it is possible
that other productive work could be done once per DSP pass. This could be used to create
the equivalent in Max of the “control-rate” as it is implemented in Csound, where rather
than control rate calculations being triggered solely by events, there is also the facility to
create lower resolution continuous signals that can be used to modulate audio signals. This
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can be useful for automating parameters that sound acceptable at lower sample rates, such
as pitch curves, and is an area that will be explored in subsequent work on S4M.

9 CONCLUSION

The Scheme For Max project brings a new way of working to the Max platform, especially
with regard to flexible and accurate scheduling of future events. The author believes this
will be of significant benefit to those working in the fields of algorithmic music and live
coding, and will also be useful to the more general Max user base as a way to script Max
in a high-level language that runs in the high-priority thread. In the author’s experience,
working in Scheme within Max has been highly productive, with the language well suited
both to expressing musical concepts and to working with the Max platform. The ability
to update code during play-back has been an especially productive workflow for building
complex sequencing and algorithmic composition tools.

Future plans for the project include a version for the open-source Pure Data platform,
similar to Max in many ways and created also by Miller Puckette, the original author of
Max. Scheme For Pure Data is now in beta release, available as source code, with binary
releases planned for August 2021. In addition to this, experimental work on running Scheme
for control-rate DSP is planned. This would entail Scheme executing in the timed audio
rendering thread, but at a subdivision of the audio sample rate such as every 32 or 64
samples, thus generating streams similar to the way digital audio is rendered, but at a lower
resolution suitable for use as signal modulators.

The author also plans to create portability layers in Scheme to allow one to run the
same Scheme code on S4M, S4Pd, or Common Music (which also uses s7), and potentially
in C4++ projects through the JUCE audio development framework. There have also been
successful ports of s7, Pure Data, and Csound to Web Assembly, thus it seems likely that
work from the project will be useable for web audio as well. It is hoped that through these
additional run-times the project can become a valuable addition to the larger computer
music community, enabling use in contexts where the commercial Max platform is not
practical or financially accessible.

As s7 Scheme is open-source itself, another potential area of work is improving s7’s
suitability for real-time use. This could include implementation of an incremental garbage
collector, for example.

Scheme For Max can be obtained on GitHub, with links to documentation, demonstration
videos, and various tutorials linked from the main page.

https://github.com/iainctduncan/scheme-for-max
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